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Introduction:
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The community is gearing towards non-precedented complexity in  
NNLO QCD computations:
More and more frameworks and schemes are introduced for tackling  
real radiations, like:
- Antenna: Gehrmann-De Ridder, Gehrmann and Ritzmann
- CoLorFuLNNLO: Del Duca, Somogyi and Trocsanyi
- Sector Improved Residue Subtraction: Czakon and Heymes
- Nested Soft-Collinear Subtraction: Caola, Melnikov and 

Röntsch
- Local Analytic Sector Subtraction: Magnea, Maina, Pelliccioli, 

Signorile-Signorile, Torrielli and Uccirati
- Projection to Born: Cacciari, Dreyer, Karlberg, Salam and 

Zanderighi
- qT Subtraction: Catani and Grazzini
- N-Jetiness: Boughezal, Focke, Liu and Petriello & Gaunt, Stahlhofen, 

Tackmann, Walsh
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Multi-scale/loop/leg amplitudes are also needed!

The recent years witness an ever-increasing interest and progress in 
multi-loop calculations: 
Achievements are made in two-loop QCD amplitude calculations:

(Sample) Five gluon two-loop amplitude calculations: 

Badger, Frellesvig and Zhang, JHEP 12 (2013) 045 
Badger, Mogull, Ochirov, and O’Connell, JHEP 10 (2015) 064 
Gehrmann, Henn, and Lo Presti, Phys. Rev. Lett. 116 (2016), no. 6 

Chawdhry, Lim, and Mitov, arXiv:1805.09182

Badger, Bronnum-Hansen, Hartanto, and Peraro, JHEP 1901 (2019) 186
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It is found that numerator structure is very complex and can have very  
large negative powers (up to -5).
While in the denominator the maximum power is 2 (at least in Feynman-
gauge).

⟹ the numerator seems the technical bottleneck
We have fantastic programs for reduction using Laporta’s algorithm: 

Reduze (Studerus and Studerus & von Manteuffel)
FIRE (AV Smirnov), FIRE6 is just came out! (arXiv:1901.07808, Smirnov, 
Chukharev)
KIRA (Maierhofer, Usovitsch and Uwer) and very recently KIRA1.2  
(arXiv:1812.01491, Maierhofer and Usovitsch)
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Beside the canonical representation the Baikov form can also be used  
to set up IBP equations.

Algebraic geometry comes as a rescue:

It is possible to formulate efficient reduction based on the Baikov  
representation: Bohm, Georgoudis, Larsen, Schonemann and Zhang:  
JHEP 1809 (2018) 024

A question naturally arises:

Can we do anything without all the fancy math?

Using the Baikov rep. the resulting IBP equations seem to be more 
complicated



The Baikov Representation
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The Representation of Baikov:
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The canonical representation of an L-loop integral:

I(L)
↵1...↵N

=

Z  LY

i=1

dd`i
i⇡d/2

!
1

D↵1
1 · · ·D↵N

N

with inverse propagators having the form of:

Da =
LX

i,j=1

Aij
a (`i · `j) +

LX

i=1

EX

j=1

Ai(j+L)
a (`i · pj) + fa , a 2 1, . . . , N

Note:N is the number of different propagators in the integral family 
(N=L(L+1)/2 + L E)

L: Number of loops
E: Number of independent external legs



The Representation of Baikov:

�8

In the Baikov representation the integral can be written as:

I(L)
↵1...↵N

= N
Z

dx1 · · · dxN

x↵1
1 · · ·x↵N

N

�
PL
N (x1 � f1, . . . , xN � fN )

� d�L�E�1
2

𝒩: prefactor, containing space-time dimension, 2’s, 𝜋’s and Γ’s  
      : Baikov polynomial PN

L

PL
N (x1, . . . , xN ) = G(`1, . . . , `L, p1, . . . , pE)|sij=PN

a=1 Aij
a xa

with G being the Gram determinant in L+E momenta and                      :

G(`1, . . . , `L, p1, . . . , pE) =
X

�2SL+E

 
sgn(�)

L+EY

i=1

qi · q�i

!
sij = qi · qj



Exploiting the Representation at L=2

�9



The L=2 Case
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What happens when we focus on L=2?

G(. . . ) ! G(`1, `2, p1, . . . , pE) =
X

�2S(2+E)

 
sgn(�)

E+2Y

i=1

qi · q�i

!
PL
N (. . . ) ! P2

N (x1, . . . , xN ) = G(`1, `2, p1, . . . , pE)|sij=PN
a=1 Aij

a xa

G(`1, `2, p1, . . . , pE) =

���������

`1 · `1 `1 · `2 · · · `1 · pE
`1 · `2 `2 · `2 · · · `2 · pE

...
...

. . .
...

`1 · pE `2 · pE · · · pE · pE

���������

Dot products are replaced by linear combinations of x’s



The L=2 Case
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The Baikov polynomial is at most quadratic in all x’s by construction
Integration boundaries are determined by:

PL
N (x1, . . . , xN ) = 0

⟹ The integrations over xi’s happen between the roots of the  
corresponding quadratic equation.

I(L)
↵1...↵N

= N
Z

dx1

x↵1
1

· · ·
Z x+

i

x�
i

dxi

x↵i
i

· · ·
Z

dxN

x↵N
N

�
. . . (x+

i � xi)(xi � x�
i )

� d�L�E�1
2

This becomes handy when devising IBP reductions!
In general the structure of the Baikov polynomial is very complicated

We focus on the case of negative sectors: 𝛼i<0 (the inverse propagator is  
in the numerator)



The L=2 Case
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Observation: in a planar two-loop integral it can always be achieved that  
only one propagator contains both loop momenta.

⟹Monomials quadratic in this Baikov x only depend on external 
kinematics:

P2
N (x1, . . . , xa, . . . , xN ) = C({pi · pj}, {mi})x2

a + . . .

p1

p2

pE

p1...E

p1...E

pσ(E)

pσ(1)

pσ(2)

ℓ1
ℓ1 − p1

ℓ1 − ℓ2

ℓ2

This is the most general two-loop planar  
topology. Note that the ordering of external  
momenta does not have to be the same in 
the two halves! 
Can happen when the 1loop x 1loop  
interference is considered as a genuine two-
loop topology

xa

x1
x2

xN



The L=2 Case
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An alternate reduction strategy can be applied to the special negative  
sector, i.e., the one having both loop momenta
Note that this topology can also be considered the product of two  
one-loop tensor integrals coupled in the numerator through a (`1 · `2)�↵a

In principle the problem can be attacked by Passarino Veltman reduction.  
This method is yet another way to attack the same problem in a 
more modern way

Schematically these integrals in Baikov rep. can be written as:

I(2)↵1...↵N
= N

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a
a Pn

with 𝛼a being negative!

Note the short-hands P = PL
N , n =

d� L� E � 1

2



New Reduction for the Special Negative Sector
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Reduction when 𝛼a=-1
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Considering the case of 𝛼a=-1:

We have an xa in the numerator, but note that:

the ellipsis stand for further terms independent of xa

Thus:

N
Z Q

dxiQ
i 6=a x

↵i
i

(@aP)Pn = C↵1...↵N I(2)↵1...↵N
+

X

{�}
�a=0

C�1...�N I(2)�1...�N
=

= C↵1...↵N I(2)↵1...↵N
+

X

{�}
�a=0

C�1...�N

⇣
I(1) ⌦ I(1)

⌘

�1...�N

The first term on RHS is our two-loop integral with some prefactors

@xaP = @aP = C{pi · pj}, {mi})xa + . . .



Reduction when 𝛼a=-1
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This can be turned into an IBP relation noting that:
Z Q

dxiQ
i 6=a x

↵i
i

(@aP)Pn =
1

n+ 1

Z Q
dxiQ

i 6=a x
↵i
i

@a
�
Pn+1

�
=

= eC↵1...↵N I(2)↵1...↵N
+

X

{�}
�a=0

eC�1...�N

⇣
I(1) ⌦ I(1)

⌘

�1...�N

= 0

Since the integrand is a total derivative in xa it integrates to zero due to  
the form of the Baikov polynomial!

We also dropped the non-essential 𝒩 prefactor hence the change in  
normalization

⟹Our two-loop integral is expressible with a sum of products of one-
loop integrals.



Reduction with General 𝛼a
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With a general negative 𝛼a we can exploit the same properties of the  
representation:

This time not only our two-loop integral appears on RHS but further ones 
too having lower rank in the special sector

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�1
a (@aP)Pn = eC↵1...↵N I(2)↵1...↵N

+
X

{�}
↵a<�a

eC�1...�N I(2)�1...�N

After some algebra:

0 =

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�1
a (@aP)Pn � 1 + ↵a

n+ 1

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�2
a P Pn

Note that the 𝛼a=-1 choice gives back the previously derived special case!

I(2)↵1...↵N
= N

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a
a PnOriginal integral:



Reduction with General 𝛼a
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The expression and the reduction can be made more compact using  
the syzygy decomposition of the Baikov polynomial:

P =
NX

j=1

gj
@P
@xj

+ b

the coeff.’s gj and b depend on the Baikov x’s!

0 =

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�1
a (@aP)Pn � 1 + ↵a

n+ 1

8
<

:

NX

j=1

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�2
a gj(@jP)Pn+

+

Z Q
dxiQ

i 6=a x
↵i
i

x�↵a�2
a bPn

)

Beside of our original two-loop integral the others appearing have the 
special sector at a lower rank. ⟹ a straightforward top-down approach  
can be utilized to get the reduction done!



Checks and Tests
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To test the approach several integral families were considered, like the  
massive and massless double-box and the massless pentabox

High ranks for considered up to 4

The proof-of-concept implementation was in Mathematica without any 
optimization

The reductions were able to get done on a laptop and the longest took 
~1 hour

For checking purposes we used KIRA1.1 and FIRE5

The traditional programs needed 48 cores and up to a day to do the same  
reduction

In all cases we found complete agreement



Conclusions
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•Alternate reduction approach is present for the mixed negative 
sectors of two-loop planar integrals

•The new strategy shows a straightforward top-down approach free 
from a Laporta-style reduction

•The method eliminates the mixed factor in the numerator converting  
the two-loop integral into the product of two one-loop tensor integrals

•When applied significant speed-up can occur

•Tested and checked on several, very complicated two-loop integral  
families being in spotlight these days



Thank you for your attention!


