UNIVERSAL FOUR-DIMENSIONAL REPRESENTATION OF HIGGS BOSON TO TWO PHOTONS AT TWO LOOPS THROUGH THE LOOP-TREE DUALITY

FÉLIX DRIENCOURT-MANGIN

In collaboration with G. Rodrigo, G. F. R. Sborlini \& W. J. Torres Bobadilla

PARTICLEFACE2019, Coimbra, 26th February
particleface

OUTLINE

I. The Loop-Tree Duality theorem at one loop
II. The Loop-Tree Duality theorem at two loops
III. Procedure for local renormalisation at two-loop order
IV. Application to $H \rightarrow \gamma \gamma$ at two loops

I. The Loop-Tree Duality theorem at one loop

THE LOOP-TREE DUALITY THEOREM

Cauchy residue theorem

in the loop energy complex plane

Feynman Propagator +i0:
positive frequencies are propagated forward in time, and negative backward.

$$
\begin{aligned}
G_{F}\left(q_{i}\right) & =\frac{1}{q_{i}^{2}-m_{i}^{2}+\imath 0} \\
q_{i} & =\ell+\sum_{k=1}^{i} p_{k}
\end{aligned}
$$

$$
\begin{aligned}
q_{i, 0} & = \pm \sqrt{\boldsymbol{q}_{i}^{2}+m_{i}^{2}-\imath 0} \\
q_{i, 0}^{(+)} & =+\sqrt{\boldsymbol{q}_{i}^{2}+m_{i}^{2}-\imath 0}
\end{aligned}
$$

selects residues with definite positive energy and negative imaginary part (indeed in any coordinate system)

I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

THE LOOP-TREE DUALITY THEOREM

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary QFT) represented as a linear combination of N single-cut phase-space integrals

$$
\int_{\ell} \prod_{i} G_{F}\left(q_{i}\right)=-\sum_{i} \int_{\ell} \tilde{\delta}\left(q_{i}\right) \prod_{j \neq i} G_{D}\left(q_{i} ; q_{j}\right)
$$

* $\tilde{\delta}\left(q_{i}\right)=i 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
* $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-i 0 \eta k_{j i}}$ dual propagator, $k_{j i}=q_{j}-q_{i}$
- LTD realized by modifying the customary +i0 prescription of the Feynman propagators, it compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem
- Lorentz-covariant dual prescription with η a future-like vector; from now on, $\eta^{\mu}=(1, \mathbf{0})$
* Integration domain now Euclidean, with the integration variable being the loop three-momentum

SINGULARITIES OF THE DUAL INTEGRANDS

I_{z}

- LTD: Equivalent to integrating along forward on-shell hyperboloids/light-cones (positive energy modes)
- The dual loop integrand becomes singular when more than one internal propagators go on-shell while integrating
- Cancellations of singularities among dual amplitudes at forward-forward intersections: dual +i 0 prescription change signs (proof of consistency)
- IR and threshold singularities illustrated by forwardbackward intersections

IR and threshold singularities are restricted to a compact region of the loop three-momentum

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

EKD L G EMAMD E.

$$
\begin{aligned}
& L^{(1)}\left(p_{1}, p_{2},-p_{3}\right)=\int_{\ell} \prod_{i=3}^{N} G_{F}\left(q_{i}\right)=\sum_{i=1}^{3} I_{i} \\
& I_{1}=\frac{4}{s_{12}} \int \frac{\xi_{1,0}^{-1} d\left[\xi_{1,0}\right] d\left[v_{1}\right]}{1-\left(1-2 v_{1}\right)^{2} \beta^{2}} \\
& I_{2}=\frac{2}{s_{12}} \int \frac{\xi_{2,0}^{-1} \xi_{2}^{2} d\left[\xi_{2}\right] d\left[v_{2}\right]}{\left(1-\xi_{2,0}+\imath 0\right)\left(\xi_{2,0}+\beta \xi_{2}\left(1-2 v_{2}\right)-m^{2}\right)} \\
& I_{3}=-\frac{2}{s_{12}} \int \frac{\xi_{3,0}^{-1} \xi_{3}^{2} d\left[\xi_{3}\right] d\left[v_{3}\right]}{\left(1+\xi_{3,0}\right)\left(\xi_{3,0}-\beta \xi_{3}\left(1-2 v_{3}\right)+m^{2}\right)}
\end{aligned}
$$

Modulus of the loop three-momentum

$$
d\left[\xi_{i}\right]=\frac{(4 \pi)^{\epsilon-2}}{\Gamma(1-\epsilon)}\left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \xi_{i}^{-2 \epsilon} d \xi_{i}
$$

$$
d\left[v_{i}\right]=v_{i}\left(1-v_{i}\right)^{-\epsilon} d v_{i}
$$

Polar angle of the loop three-momentum

II. The Loop-Tree Duality theorem at two loops

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- Consider three sets of momenta

$$
\begin{cases}\alpha_{1}=\left\{\ell_{1}+p_{i},\right. & i \in\{0, \ldots, r\}\} \\ \alpha_{2}=\left\{\ell_{2}+p_{i},\right. & i \in\{r+1, \ldots, l\}\} \\ \alpha_{3}=\left\{\ell_{1}+\ell_{2}+p_{i},\right. & i \in\{l+1, \ldots, N\}\}\end{cases}
$$

- Two loops means... cutting twice: we need to impose two conditions on the couple $\left(\ell_{1}, \ell_{2}\right)$.
- The idea is therefore to put on shell two particles belonging to two different sets

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- For a given set α_{k}, or a union of sets, we introduce

$$
G_{F}\left(\alpha_{k}\right)=\prod_{i \in \alpha_{k}} G_{F}\left(q_{i}\right), \quad G_{D}\left(\alpha_{k}\right)=\sum_{i \in \alpha_{k}} \tilde{\delta}\left(q_{i}\right) \prod_{\substack{j \in \alpha_{k} \\ j \neq i}} G_{D}\left(q_{i} ; q_{j}\right)
$$

- It is possible to show that these functions fulfill the following identity...

$$
G_{D}\left(\alpha_{i} \cup \alpha_{j}\right)=G_{D}\left(\alpha_{i}\right) G_{D}\left(\alpha_{j}\right)+G_{D}\left(\alpha_{i}\right) G_{F}\left(\alpha_{j}\right)+G_{F}\left(\alpha_{i}\right) G_{D}\left(\alpha_{j}\right)
$$

- ... which allows to iteratively extend LTD to two loops, and even beyond

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- With these notations, the LTD theorem at one loop can be written

$$
\mathcal{A}_{N}^{(1)}=\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{D}\left(\alpha_{1}\right)
$$

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- With these notations, the LTD theorem at one loop can be written

$$
\mathcal{A}_{N}^{(1)}=\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{D}\left(\alpha_{1}\right)
$$

- Using this, and starting from the Feynman amplitude

$$
\begin{aligned}
\mathcal{A}_{N}^{(2)} & =\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \underline{G_{F}\left(\alpha_{2} \cup \alpha_{3}\right)} \\
& =\ominus \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \frac{\ddots}{G_{D}\left(\alpha_{2} \cup \alpha_{3}\right)}
\end{aligned}
$$

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- With these notations, the LTD theorem at one loop can be written

$$
\mathcal{A}_{N}^{(1)}=\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{D}\left(\alpha_{1}\right)
$$

- Using this, and starting from the Feynman amplitude

$$
\begin{aligned}
\mathcal{A}_{N}^{(2)} & =\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \underline{G_{F}\left(\alpha_{2} \cup \alpha_{3}\right)} \\
& =\ominus \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \frac{\ddots}{G_{D}\left(\alpha_{2} \cup \alpha_{3}\right)}
\end{aligned}
$$

$\leadsto G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)+G_{F}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)+G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{F}\left(\alpha_{3}\right)$

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- With these notations, the LTD theorem at one loop can be written

$$
\mathcal{A}_{N}^{(1)}=\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right)=-\int_{\ell_{1}} \mathcal{N}\left(\ell_{1},\left\{p_{i}\right\}_{N}\right) G_{D}\left(\alpha_{1}\right)
$$

- Using this, and starting from the Feynman amplitude

$$
\begin{aligned}
\mathcal{A}_{N}^{(2)} & =\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \underline{G_{F}\left(\alpha_{2} \cup \alpha_{3}\right)} \\
& =\ominus \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1}\right) \frac{\ddots}{G_{D}\left(\alpha_{2} \cup \alpha_{3}\right)}
\end{aligned}
$$

$\curvearrowright G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)+\underset{\text { Ok }}{G_{F}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right)} G_{D}\left(\alpha_{3}\right)+\underset{-G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right)}{G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{F}\left(\alpha_{3}\right)}$
$-G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)$

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- Which leads to the master formula at two loops

$$
\mathcal{A}_{N}^{(2)}=\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)\left[G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)+G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right) G_{D}\left(\alpha_{3}\right)-G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]
$$

($\alpha_{1}, \alpha_{2}, \alpha_{3}$ completely interchangeable)

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- Which leads to the master formula at two loops

$$
\mathcal{A}_{N}^{(2)}=\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)\left[G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)+G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right) G_{D}\left(\alpha_{3}\right)-G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]
$$

($\alpha_{1}, \alpha_{2}, \alpha_{3}$ completely interchangeable)

- Notice the minus sign in the second term $-\alpha_{k}=\left\{-q, q \in \alpha_{k}\right\}$

gENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- Which leads to the master formula at two loops

$$
\mathcal{A}_{N}^{(2)}=\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)\left[G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)+G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right) G_{D}\left(\alpha_{3}\right)-G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]
$$

($\alpha_{1}, \alpha_{2}, \alpha_{3}$ completely interchangeable)

* Notice the minus sign in the second term $-\alpha_{k}=\left\{-q, q \in \alpha_{k}\right\}$
- The on-shell delta is modified accordingly

$$
\tilde{\delta}\left(-q_{j}\right)=\frac{i \pi}{q_{j, 0}^{(+)}} \delta\left(q_{j, 0}+q_{j, 0}^{(+)}\right)
$$

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- Say we have a planar two-loop diagram with fixed external ordering, we can write

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- Say we have a planar two-loop diagram with fixed external ordering, we can write

$$
\begin{aligned}
& \alpha_{1}=\left\{q_{1}, q_{12}, \ldots, q_{1 N}\right\} \\
& \alpha_{2}=\left\{q_{N+1}\right\} \\
& \alpha_{3}=\left\{q_{\overline{1}}, q_{\overline{12}}, \ldots, q_{\overline{1 N}}\right\} \\
& q_{1 j}=\ell_{1}+p_{1}+p_{2}+\cdots+p_{j} \\
& q_{N+1}=\ell_{2} \\
& q_{\overline{1 j}}=\ell_{1}+\ell_{2}+p_{1}+p_{2}+\cdots+p_{j}
\end{aligned}
$$

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- This sums up to $\mathrm{N}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)=2 N+1$ Feynman propagators for the uncut integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}\left(q_{i}, q_{j}\right)$, we have in the end $2 N-1$ dual propagators

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- This sums up to $\mathrm{N}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)=2 N+1$ Feynman propagators for the uncut integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}\left(q_{i}, q_{j}\right)$, we have in the end $2 N-1$ dual propagators
- The independent scalar products we can encounter in the numerator are

$$
\left\{\ell_{1} \cdot p_{i}, \ell_{2} \cdot p_{i}, \ell_{1} \cdot \ell_{2} \mid i \in\{1,2, \ldots, N-1\}\right\}
$$

- This sums up to $2 N-1$ scalar products

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- This sums up to $\mathrm{N}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)=2 N+1$ Feynman propagators for the uncut integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}\left(q_{i}, q_{j}\right)$, we have in the end $2 N-1$ dual propagators
- The independent scalar products we can encounter in the numerator are

$$
\left\{\ell_{1} \cdot p_{i}, \ell_{2} \cdot p_{i}, \ell_{1} \cdot \ell_{2} \mid i \in\{1,2, \ldots, N-1\}\right\}
$$

- This sums up to $2 N-1$ scalar products

\neg There are as many dual propagators as scalar products

- It is therefore possible to rewrite the numerators in terms of dual propagators, and this in a unique way

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- We can rewrite any planar two-loop integrand $\mathcal{A}_{N}^{(2)}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)$ as

$$
\begin{aligned}
\mathcal{A}_{N}^{(2)} & =\int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right) G_{F}\left(\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}\right)+\text { perm. } & \text { (Before cutting) } \\
& =\int_{\ell_{1}} \int_{\ell_{2}} \sum_{j, k}\left[\frac{c_{a_{0} ; a_{1}, \ldots, a_{2 N-1}}\left(\left\{p_{i}\right\}_{N}\right)}{\left(\kappa_{j}\right)^{a_{0}}\left(d_{i_{1}}\right)^{a_{1}}\left(d_{i_{2}}\right)^{a_{2}} \cdots\left(d_{i_{2 N-1}}\right)^{a_{2 N-1}}}\right] \tilde{\delta}\left(q_{j}, q_{k}\right)+\text { perm. } & \text { (After cutting) }
\end{aligned}
$$

- The idea is to rearrange the expressions of the dual cuts so we have the minimum amount of independent coefficients $c_{a_{0} ; a_{1}, \ldots, a_{2 N-1}}$

III. Procedure for local renormalisation at two-loop order

ONE-LOOP PROCEDURE

- We consider a Feynman (uncut) integrand $I\left(\ell,\left\{p_{i}\right\}_{N}\right)$, and the replacement

$$
S:\left\{\begin{array}{l}
\ell^{2} \rightarrow \lambda^{2} \ell^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell \cdot p_{i} \rightarrow \lambda \ell \cdot p_{i}
\end{array}\right.
$$

ONE-LOOP PROCEDURE

- We consider a Feynman (uncut) integrand $I\left(\ell,\left\{p_{i}\right\}_{N}\right)$, and the replacement

$$
S:\left\{\begin{array}{l}
\ell^{2} \rightarrow \lambda^{2} \ell^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell \cdot p_{i} \rightarrow \lambda \ell \cdot p_{i}
\end{array}\right.
$$

- Computing the local UV counter-term C of I is done by
- Applying the replacement S on I
- Taking the limit $\lambda \rightarrow \infty$
- Selecting the divergent terms, which gives (unfixed) C
- Fixing the finite part so C integrates to the desired quantity $\left(\mathcal{O}\left(\epsilon^{0}\right)=0\right.$ in $\left.\overline{\mathrm{MS}}\right)$

ONE-LOOP PROCEDURE

- We consider a Feynman (uncut) integrand $I\left(\ell,\left\{p_{i}\right\}_{N}\right)$, and the replacement

$$
S:\left\{\begin{array}{l}
\ell^{2} \rightarrow \lambda^{2} \ell^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell \cdot p_{i} \rightarrow \lambda \ell \cdot p_{i}
\end{array}\right.
$$

- Computing the local UV counter-term C of I is done by
- Applying the replacement S on I
- Taking the limit $\lambda \rightarrow \infty$
- Selecting the divergent terms, which gives (unfixed) C
- Fixing the finite part so C integrates to the desired quantity $\left(\mathcal{O}\left(\epsilon^{0}\right)=0\right.$ in $\left.\overline{\mathrm{MS}}\right)$
- We then obtain a counter-term C and the quantity $I-C$ is locally UV safe

TWO-LOOP PROCEDURE (SINGLE UV)

- This time, we consider a two-loop Feynman integrand $I\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)$
- Applying the one-loop procedure to each loop momenta independently, using the replacements

$$
S_{1}:\left\{\begin{array}{l}
\ell_{1}^{2} \rightarrow \lambda^{2} \ell_{1}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{1} \cdot p_{i} \rightarrow \lambda \ell_{1} \cdot p_{i}
\end{array} \quad S_{2}:\left\{\begin{array}{l}
\ell_{2}^{2} \rightarrow \lambda^{2} \ell_{2}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{2} \cdot p_{i} \rightarrow \lambda \ell_{2} \cdot p_{i}
\end{array}\right.\right.
$$

TWO-LOOP PROCEDURE (SINGLE UV)

- This time, we consider a two-loop Feynman integrand $I\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)$
- Applying the one-loop procedure to each loop momenta independently, using the replacements

$$
S_{1}:\left\{\begin{array}{l}
\ell_{1}^{2} \rightarrow \lambda^{2} \ell_{1}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{1} \cdot p_{i} \rightarrow \lambda \ell_{1} \cdot p_{i}
\end{array} \quad S_{2}:\left\{\begin{array}{l}
\ell_{2}^{2} \rightarrow \lambda^{2} \ell_{2}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{2} \cdot p_{i} \rightarrow \lambda \ell_{2} \cdot p_{i}
\end{array}\right.\right.
$$

- We obtain two counter-terms, C_{1} and C_{2}, but $I-C_{1}-C_{2}$ is still not UV safe

TWO-LOOP PROCEDURE (SINGLE UV)

- This time, we consider a two-loop Feynman integrand $I\left(\ell_{1}, \ell_{2},\left\{p_{i}\right\}_{N}\right)$
- Applying the one-loop procedure to each loop momenta independently, using the replacements

$$
S_{1}:\left\{\begin{array}{l}
\ell_{1}^{2} \rightarrow \lambda^{2} \ell_{1}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{1} \cdot p_{i} \rightarrow \lambda \ell_{1} \cdot p_{i}
\end{array} \quad S_{2}:\left\{\begin{array}{l}
\ell_{2}^{2} \rightarrow \lambda^{2} \ell_{2}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{2} \cdot p_{i} \rightarrow \lambda \ell_{2} \cdot p_{i}
\end{array}\right.\right.
$$

- We obtain two counter-terms, C_{1} and C_{2}, but $I-C_{1}-C_{2}$ is still not UV safe

We need to subtract the double UV limit (when both loop momenta go to infinity)

TWO-LOOP PROCEDURE (DOUBLE UV)

- Computing the double UV behavior is very similar to the one-loop procedure, with some subtleties. We consider the replacement

$$
S_{12}:\left\{\begin{array}{l}
\ell_{i}^{2} \rightarrow \lambda^{2} \ell_{i}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{1} \cdot \ell_{2} \rightarrow \lambda^{2} \ell_{1} \cdot \ell_{2}-\left(1-\lambda^{2}\right) \mu^{2} / 2 \\
\ell_{i} \cdot p_{k} \rightarrow \lambda \ell_{i} \cdot p_{k}
\end{array}\right.
$$

TWO-LOOP PROCEDURE (DOUBLE UV)

- Computing the double UV behavior is very similar to the one-loop procedure, with some subtleties. We consider the replacement

$$
S_{12}:\left\{\begin{array}{l}
\ell_{i}^{2} \rightarrow \lambda^{2} \ell_{i}^{2}+\left(1-\lambda^{2}\right) \mu^{2} \\
\ell_{1} \cdot \ell_{2} \rightarrow \lambda^{2} \ell_{1} \cdot \ell_{2}-\left(1-\lambda^{2}\right) \mu^{2} / 2 \\
\ell_{i} \cdot p_{k} \rightarrow \lambda \ell_{i} \cdot p_{k}
\end{array}\right.
$$

- We then take $I-C_{1}-C_{2}$, and the counter-term is obtained by
- Applying the replacement S_{12} on $I-C_{1}-C_{2}$
- Taking the limit $\lambda \rightarrow \infty$
- Selecting the divergent terms, which gives (unfixed) C_{12}
- Fixing the finite part so C_{12} integrates to the desired quantity ($\mathcal{O}\left(\epsilon^{0}\right)=0$ in $\overline{\mathrm{MS}}$)

TWO-LOOP PROCEDURE (DOUBLE UV)

- This iterative way is similar to what is done in DREG, but you don't need to integrate anything to compute the actual counter-terms
- In addition to fixing the potential additional singularities introduced by C_{1} and C_{2}, C_{12} also removes singularities occurring when $\left(\ell_{1}, \ell_{2}\right) \rightarrow(\infty, \infty)$
- $I_{\text {ren }}=I-C_{1}-C_{2}-C_{12}$ is therefore completely free of any UV singularity, and, after applying LTD, can safely be integrated in four dimensions!
IV. Application to $H \rightarrow \gamma \gamma$ at two loops

"NON-MIXED" QED CORRECTIONS

12 diagrams with a top as the internal particle 37 diagrams with a charged scalar as the internal particle

SIMPLIFYING THE MASTER FORMULA

- If the Higgs boson is on shell, we are below threshold, i.e. $4 M_{f}^{2}>M_{H}^{2}$

- This simplifies a lot the two-loop representation of LTD

$$
\begin{gathered}
{\left[G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)+G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right) G_{D}\left(\alpha_{3}\right)-G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]} \\
{\left[G_{D}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{F}\left(\alpha_{3}\right)+G_{F}\left(\alpha_{1}\right) G_{D}\left(-\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)+G_{D}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]}
\end{gathered}
$$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

SIMPLIFYING THE MASTER FORMULA

- If the Higgs boson is on shell, we are below threshold, i.e. $4 M_{f}^{2}>M_{H}^{2}$

- This simplifies a lot the two-loop representation of LTD

$$
\begin{aligned}
& {\left[G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{1} \cup \alpha_{3}\right)+G_{D}\left(-\alpha_{2} \cup \alpha_{1}\right) G_{D}\left(\alpha_{3}\right)-G_{F}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]} \\
& {\left[\frac{G_{D}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2}\right) G_{F}\left(\alpha_{3}\right)}{4}+\frac{G_{F}\left(\alpha_{1}\right) G_{D}\left(-\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)}{}+\frac{G_{D}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)}{\square} 4\right. \text { 4 double cuts }}
\end{aligned}
$$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

UNIVERSALITY OF THE DUAL AMPLITUDES

- The 22 dual double cuts can be written with 9 generators, for instance

$$
\begin{aligned}
\mathcal{A}_{1}^{(2, f)}\left(q_{i}, q_{4}\right) & =g_{f}^{(2)} \int_{\ell_{1}} \int_{\ell_{2}} \tilde{\delta}\left(q_{i}, q_{4}\right)\left\{-\frac{r_{f} c_{1}^{(f)}}{D_{3} D_{12}}\left(G\left(D_{\bar{i}}, \kappa_{i}, c_{4, u}^{(f)}\right)\left(1+H\left(D_{3} D_{12}, \kappa_{i}\right)\right)+F\left(D_{\bar{i}}, \kappa_{4} / \kappa_{i}\right)\right)\right. \\
& +\left(c_{7}^{(f)}\left(\frac{1}{D_{\bar{i}}}-\frac{1}{D_{\overline{3}}}\left(1-\frac{D_{3}}{D_{12}}\left(1-\frac{D_{\overline{12}}}{D_{\bar{i}}}\right)\right)\right)+\frac{1}{D_{3}}\left(c_{8}^{(f)}\left(\frac{1}{D_{\overline{3}}}-\frac{1}{D_{\bar{i}}}\right)-\frac{1}{D_{\overline{12}}}\left(c_{9}^{(f)}-c_{10}^{(f)} \frac{D_{\overline{3}}}{D_{\bar{i}}}\right)\right)\right. \\
& +2 r_{f}\left[\frac { 1 } { D _ { 3 } D _ { 1 2 } } \left(c_{1}^{(f)}\left(\frac{1}{D_{3} D_{\overline{3}}}+\frac{1}{D_{\bar{i}}}\left(\frac{1}{D_{\overline{3}}}-\frac{1}{D_{3}}\right)\right)+\frac{c_{14}^{(f)}}{D_{\overline{3}}}+\frac{c_{20}^{(f)}}{D_{\bar{i}}}-c_{16}^{(f)}\right.\right. \\
& \left.\left.\left.\left.+c_{17}^{(f)}\left(\frac{D_{\bar{i}}-D_{\overline{12}}}{D_{\overline{3}}}+\frac{D_{\overline{3}}}{D_{\bar{i}}}\right)\right)-\frac{1}{D_{\bar{i}} D_{\overline{3}}}\left(\frac{c_{7}^{(f)}}{D_{12}}+c_{18}^{(f)}\right)\right]+\{3 \leftrightarrow 12\}\right)\right\}
\end{aligned}
$$

- The $c_{i}^{(f)}$ are scalar coefficients and depend only on the reduced mass $r_{f}=\frac{s_{12}}{M_{f}^{2}}$ and the dimension d, while the D_{i} are normalized dual propagators

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

UNIVERSALITY OF THE DUAL AMPLITUDES

$c_{4, u}^{(t)}=-\frac{d-2}{4}$,
$c_{8}^{(t)}=c_{1}^{(t)}+\frac{(d-6) d+10}{2(d-2)} r_{t}$,
$c_{4, n u}^{(t)}=-\frac{d-2}{4}$,
$c_{9}^{(t)}=c_{1}^{(t)}-\frac{(d-8) d+10}{2(d-2)} r_{t}$,
$c_{12}^{(t)}=-\frac{(d-4)(d-5)}{d-2} r_{t}$,
$c_{15}^{(t)}=-\frac{1}{2}\left(c_{1}^{(f)}+\frac{r_{t}}{2}\right)$,
$c_{18}^{(t)}=-\frac{(d-4)^{2}}{4(d-2)}$,
$c_{21}^{(t)}=-\frac{2(d-4)}{d-2}+\frac{(d-10) d+18}{4(d-2)} r_{t}$,
$c_{4, u}^{(\phi)}=-\frac{d-2}{4}$,
$c_{8}^{(\phi)}=c_{1}^{(\phi)}$,
$c_{11}^{(\phi)}=c_{1}^{(\phi)}+\frac{d-4}{d-2} r_{\phi}$,
$c_{14}^{(\phi)}=\frac{3}{4} c_{1}^{(\phi)}$,
$c_{17}^{(\phi)}=0$,
$c_{20}^{(\phi)}=\frac{1}{4} c_{1}^{(\phi)}$,
$c_{4, n u}^{(\phi)}=\frac{1}{4}$,
$c_{9}^{(\phi)}=c_{1}^{(\phi)}-\frac{1}{(d-2)} r_{\phi}$,
$c_{12}^{(\phi)}=-\frac{3(d-4)}{2(d-2)} r_{\phi}$,
$c_{15}^{(\phi)}=-\frac{1}{2} c_{1}^{(\phi)}$,
$c_{18}^{(\phi)}=0$,
$c_{21}^{(\phi)}=-\frac{3}{d-2}$,
$c_{22}^{(t)}=-2+\frac{(d-4) d}{4(d-2)} r_{t}$,
$c_{7}^{(t)}=-\frac{1}{4}\left(c_{1}^{(t)}-r_{t}\right)$,
$c_{10}^{(t)}=c_{1}^{(t)}-\frac{(d-8) d+14}{2(d-2)} r_{t}$,
$c_{13}^{(t)}=-\frac{(d-6) d+12}{2(d-2)} r_{t}$,
$c_{16}^{(t)}=\frac{d-8}{4}$,
$c_{19}^{(t)}=\frac{1}{2}\left(c_{1}^{(t)}+\frac{1}{d-2} r_{t}\right)$,
$c_{7}^{(\phi)}=-\frac{1}{4} c_{1}^{(\phi)}$,
$c_{10}^{(\phi)}=c_{1}^{(\phi)}$,
$c_{13}^{(\phi)}=\frac{1}{d-2} r_{\phi}$,
$c_{16}^{(\phi)}=\frac{1}{2}$,
$c_{19}^{(\phi)}=\frac{1}{2} c_{1}^{(\phi)}$,
$c_{22}^{(\phi)}=-\frac{1}{d-2}$.

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

SINGLE UV COUNTER-TERMS

- There are three things to renormalize:
- The Higgs boson vertex
- The photon vertices
- The self-energies

SINGLE UV COUNTER-TERMS

- There are three things to renormalize:
- The Higgs boson vertex
- The photon vertices
- The self-energies
- The single UV counter-terms are built by taking ℓ_{1} or $\ell_{12}=\ell_{1}+\ell_{2}$ to infinity in the relevant diagrams
- For instance, for the Higgs boson vertex correction

HIGGS BOSON VERTEX RENORMALISATION

- There are two contributing diagrams for the top, three for the scalar and the counter-term is computed by taking $\ell_{1} \rightarrow \infty$ at integrand level
- The Higgs vertex corrections read, for both particles,

$$
\begin{aligned}
\boldsymbol{\Gamma}_{H, \mathrm{UV}}^{(1, f)} & =\left(e e_{f}\right)^{2} \int_{\ell_{1}}\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{2}\left(c_{H, \mathrm{UV}}^{(f)}-G_{F}\left(q_{1, \mathrm{UV}}\right) d_{H, \mathrm{UV}}^{(f)} \mu_{\mathrm{UV}}^{2}\right) \boldsymbol{\Gamma}_{H}^{(0, f)} \\
& =\left(e e_{f}\right)^{2} \frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{C_{H, \mathrm{UV}}^{(f)}}{\epsilon} \boldsymbol{\Gamma}_{H}^{(0, f)}
\end{aligned}
$$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

HIGGS BOSON VERTEX RENORMALISATION

- There are two contributing diagrams for the top, three for the scalar and the counter-term is computed by taking $\ell_{1} \rightarrow \infty$ at integrand level
- The Higgs vertex corrections read, for both particles,

Depends on what we renormalise (here the Higgs vertex) Depends on the renormalisation scheme

$$
\left.\begin{array}{rl}
\Gamma_{H, \mathrm{UV}}^{(1, f)} & =\left(e e_{f}\right)^{2} \int_{\ell_{1}}\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{2}\left(\left(c_{H, \mathrm{UV}}^{(f)}\right)\right. \\
& =\left(e e_{f}\right)^{2} \frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-\epsilon} G_{F}\left(q_{1, \mathrm{UV}}\right) d_{H, \mathrm{UV}}^{(f)} \boldsymbol{d}_{H}^{(0, f)}
\end{array} \mu_{\mathrm{UV}}^{2}\right) \Gamma_{H}^{(0, f)},
$$

Is a combination of $c_{H, \mathrm{UV}}^{(f)}$ and $d_{H, \mathrm{UV}}^{(f)}$ and is obtained by integrating in d dimensions

PHOTON VERTEX RENORMALISATION

- The idea is exactly the same (there are more diagrams though), with this time the limit that needs to be considered being $\ell_{12} \rightarrow \infty$
- The corresponding counter-term for the top reads

$$
\begin{aligned}
\boldsymbol{\Gamma}_{\gamma, \mathrm{UV}}^{(1, t)} & =\left(e e_{t}\right)^{2} \int_{\ell_{2}}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{2}\left(\left(c_{\gamma, \mathrm{UV}}^{(t)}-G_{F}\left(q_{12, \mathrm{UV}}\right) d_{\gamma, \mathrm{UV}}^{(t)} \mu_{\mathrm{UV}}^{2}\right) \boldsymbol{\Gamma}_{\gamma}^{(0, t)}+c_{\gamma, \mathrm{UV}}^{(t)} \boldsymbol{\Delta}_{\gamma, \mathrm{UV}}^{(1, t)}\right) \\
& =\left(e e_{t}\right)^{2} \frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{C_{\gamma, \mathrm{UV}}^{(t)}}{\epsilon} \boldsymbol{\Gamma}_{\gamma}^{(0, t)}
\end{aligned}
$$

PHOTON VERTEX RENORMALISATION

- The idea is exactly the same (there are more diagrams though), with this time the limit that needs to be considered being $\ell_{12} \rightarrow \infty$
- The corresponding counter-term for the top reads

$$
\begin{aligned}
\boldsymbol{\Gamma}_{\gamma, \mathrm{UV}}^{(1, t)} & =\left(e e_{t}\right)^{2} \int_{\ell_{2}}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{2}\left(\left(c_{\gamma, \mathrm{UV}}^{(t)}-G_{F}\left(q_{12, \mathrm{UV}}\right) d_{\gamma, \mathrm{UV}}^{(t)} \mu_{\mathrm{UV}}^{2}\right) \boldsymbol{\Gamma}_{\gamma}^{(0, t)}+c_{\gamma, \mathrm{UV}}^{(t)} \boldsymbol{\Delta}_{\gamma, \mathrm{UV}}^{(1, t)}\right) \\
& =\left(e e_{t}\right)^{2} \frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{C_{\gamma, \mathrm{UV}}^{(t)}}{\epsilon} \boldsymbol{\Gamma}_{\gamma}^{(0, t)}
\end{aligned}
$$

- The additional term $\boldsymbol{\Delta}_{\gamma, \mathrm{UV}}^{(1, t)}$ integrates to 0 in d dimensions but is needed for local renormalisation

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

DOUBLE UV RENORMALISATION

- Accorded to the replacement S_{12}, the double UV counter-term must have the form

$$
\begin{aligned}
\mathcal{A}_{\mathrm{UV}^{2}}^{(2, f)}= & g_{f} s_{12}\left(e e_{f}\right)^{2} \int_{\ell_{1}} \int_{\ell_{2}}\left[\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{n_{1}}\left(G_{F}\left(q_{2, \mathrm{UV}}\right)\right)^{n_{2}}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{n_{12}} \mathcal{N}^{(f)}\right. \\
& \left.-4\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{3}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{3} d_{\mathrm{UV}^{2}}^{(f)} \mu_{\mathrm{UV}}^{4}\right],
\end{aligned}
$$

DOUBLE UV RENORMALISATION

- Accorded to the replacement S_{12}, the double UV counter-term must have the form

$$
\begin{aligned}
\mathcal{A}_{\mathrm{UV}^{2}}^{(2, f)}= & g_{f} s_{12}\left(e e_{f}\right)^{2} \int_{\ell_{1}} \int_{\ell_{2}}\left[\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{n_{1}}\left(G_{F}\left(q_{2, \mathrm{UV}}\right)\right)^{n_{2}}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{n_{12}} \mathcal{N}^{(f)}\right. \\
& \left.-4\left(G_{F}\left(q_{1, \mathrm{UV}}\right)\right)^{3}\left(G_{F}\left(q_{12, \mathrm{UV}}\right)\right)^{3} d_{\mathrm{UV}^{2}}^{(f)} \mu_{\mathrm{UV}}^{4}\right],
\end{aligned}
$$

- By using IBP, we can show that $\mathcal{A}_{\mathrm{UV}^{2}}^{(2, f)}=c_{\ominus}^{(f)} I_{\ominus}+c_{\odot}^{(f)} I_{\odot}^{2}$

Sunrise diagram with vanishing external momenta

- By replacing the integrals by their values in d dimensions, we can choose $d_{\mathrm{UV}^{2}}^{(f)}$ to fix the renormalisation scheme

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

DOUBLE UV RENORMALISATION

- The total double UV counter-terms for the top and the scalar read

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{UV}^{2}}^{(2, t)}=g_{f} s_{12}\left(e e_{t}\right)^{2}\left(\frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\right)^{2}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-2 \epsilon}\left(40+\frac{16 K_{\ominus}}{3}+4\left(d_{H, \mathrm{UV}}^{(t)}-d_{\gamma, \mathrm{UV}}^{(t)}\right)-d_{\mathrm{UV}^{2}}^{(t)}+\mathcal{O}(\epsilon)\right) \\
& \mathcal{A}_{\mathrm{UV}^{2}}^{(2, \phi)}=g_{f} s_{12}\left(e e_{\phi}\right)^{2}\left(\frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\right)^{2}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-2 \epsilon}\left(-18-\frac{8 K_{\ominus}}{3}-d_{\mathrm{UV}^{2}}^{(\phi)}+\mathcal{O}(\epsilon)\right),
\end{aligned}
$$

DOUBLE UV RENORMALISATION

- The total double UV counter-terms for the top and the scalar read

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{UV}^{2}}^{(2, t)}=g_{f} s_{12}\left(e e_{t}\right)^{2}\left(\frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\right)^{2}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-2 \epsilon}\left(40+\frac{16 K_{\ominus}}{3}+4\left(d_{H, \mathrm{UV}}^{(t)}-d_{\gamma, \mathrm{UV}}^{(t)}\right)-d_{\mathrm{UV}}{ }^{(t)}+\mathcal{O}(\epsilon)\right) \\
& \mathcal{A}_{\mathrm{UV}^{2}}^{(2, \phi)}=g_{f} s_{12}\left(e e_{\phi}\right)^{2}\left(\frac{\tilde{S}_{\epsilon}}{16 \pi^{2}}\right)^{2}\left(\frac{\mu_{\mathrm{UV}}^{2}}{\mu^{2}}\right)^{-2 \epsilon}\left(-18-\frac{8 K_{\ominus}}{3}-d_{\mathrm{UV}^{2}}^{(\phi)}+\mathcal{O}(\epsilon)\right),
\end{aligned}
$$

- Even though they do not actually renormalise anything, their presence is still necessary to remove local double UV divergences
- This is very similar to the one-loop case: it is finite, but still requires the presence of a local counter-term to obtain the correct result

NUMERICAL INTEGRATION

- We use the following parametrizations for the amplitude

$$
\begin{aligned}
\boldsymbol{\ell}_{1} & =\frac{\sqrt{s_{12}}}{2} \xi_{1}\left(\sin \left(\theta_{1}\right), 0, \cos \left(\theta_{1}\right)\right) \\
\boldsymbol{\ell}_{12}=\boldsymbol{\ell}_{1}+\boldsymbol{\ell}_{2} & =\frac{\sqrt{s_{12}}}{2} \xi_{12}\left(\sin \left(\theta_{12}\right) \cos \left(\varphi_{12}\right), \sin \left(\theta_{12}\right) \sin \left(\varphi_{12}\right), \cos \left(\theta_{12}\right)\right) \\
\mathbf{p}_{1} & =\frac{\sqrt{s_{12}}}{2}(0,0,1) \\
\mathbf{p}_{2} & =\frac{\sqrt{s_{12}}}{2}(0,0,-1)
\end{aligned}
$$

- And we compactify the integration domain by using the change of variables

$$
\xi_{i} \rightarrow \frac{x_{i}}{1-x_{i}} \quad \text { for } \quad x_{i} \in[0,1]
$$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

NUMERICAL INTEGRATION

Results in the $\overline{\mathrm{MS}}$ scheme, with two different values of the renormalisation scale Integration time (with Mathematica on a desktop computer) is $\mathcal{O}\left(1^{\prime}\right)$ for each point

SUMMARY \& OUTLOOK

What we have achieved...

- The Loop-Tree Duality theorem has been extended to two loops and applied to the $H \rightarrow \gamma \gamma$ process at NLO, in a (almost) fully automatized way
- All UV divergences have been dealt with by computing local counter-terms, allowing a straightforward numerical integration in four dimensions

SUMMARY \& OUTLOOK

What we have achieved...

- The Loop-Tree Duality theorem has been extended to two loops and applied to the $H \rightarrow \gamma \gamma$ process at NLO, in a (almost) fully automatized way
- All UV divergences have been dealt with by computing local counter-terms, allowing a straightforward numerical integration in four dimensions

What remains to be done...

- Fully functioning automated code at two-loop, from input to plot
- Dealing with potential physical threshold singularities (contour deformation) and compute the respective imaginary part
- Dealing with potential infrared singularities (i.e. extending FDU at two loops)

Thank you!

Backup slides

DEALING WITH THE SINGULARITIES

Infrared singularities
$\left(|\ell| \rightarrow 0\right.$ and $\left.\boldsymbol{\ell} \| \boldsymbol{p}_{i}\right)$

Cancelled by the real contributions

Mapping real kinematics to match the virtual one

Ultraviolet singularities
$(|\ell| \rightarrow \infty)$

Dealt with
renormalization

Building integrand-level counterterms to achieve local cancellations

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one collinear singularity in a given region of the phase-space)

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one collinear singularity in a given region of the phase-space)
2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual contributions

In Region i :
$\left(q_{i} \| p_{i}\right)$

$$
\begin{aligned}
p_{r}^{\prime} & =q_{i}, \quad p_{i}^{\prime}=p_{i}-q_{i}+\alpha_{i} p_{j} \\
p_{j}^{\prime} & =\left(1-\alpha_{i}\right) p_{j}, \quad p_{k}^{\prime}=p_{k}
\end{aligned}
$$

BUILD LOCAL UV COUNTER-TERMS

- Expand the uncut and unintegrated amplitude around the UV propagator

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+\imath 0}+\ldots \quad q_{\mathrm{UV}}=\ell+k_{\mathrm{UV}}
$$

- By choosing $k_{\mathrm{UV}}=0$, this is equivalent to applying the following replacement...

$$
\left\{\begin{array}{l}
\ell^{2} \rightarrow \lambda^{2} q_{\mathrm{UV}}^{2}+\left(1-\lambda^{2}\right) \mu_{\mathrm{UV}}^{2} \\
\ell \cdot p_{i} \rightarrow \lambda q_{\mathrm{UV}} \cdot p_{i}
\end{array}\right.
$$

-.. and then expanding around λ and taking only the divergent terms

- For the scalar two-point function

$$
I=\int_{\ell} \frac{1}{\left(\ell^{2}-M^{2}+\imath 0\right)\left((\ell+p)^{2}-M^{2}+\imath 0\right)} \leadsto I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{1}{\left(q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+\imath 0\right)^{2}}
$$

- Apply LTD on this local counter-term, and subtract it from the amplitude

II. THE FOUR-DIMENSIONAL UNSUBTRACTION

COMPUTATION SAMPLES

KINOSHITA-LEE-NAUENBERG THEOREM

- The Standard Model is infrared finite

- In the traditional approach, the singularities have different signs after integration
- Within FDU, cancellations are performed locally

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

REGION 2
$y_{2, r}^{\prime}<y_{1, r}^{\prime}$

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

THE MOMENTUM MAPPING

Defining the mappings requires two steps:
2. Implementing an optimized mapping in each region, to allow a fully local cancellation of $\mathbb{I R}$ singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

$$
\begin{aligned}
& p_{r}^{\prime \mu}=q_{1}^{\mu}, \quad p_{1}^{\prime \mu}=p_{1}^{\mu}-q_{1}^{\mu}+\alpha_{1} p_{2}^{\mu}, \\
& p_{2}^{\prime \mu}=\left(1-\alpha_{1}\right) p_{2}^{\mu}, \quad \alpha_{1}=\frac{q_{3}^{2}}{2 q_{3} \cdot p_{2}},
\end{aligned}
$$

REGION 1:

$$
\begin{aligned}
& p_{2}^{\prime \mu}=q_{2}^{\mu}, \quad p_{r}^{\prime \mu}=p_{2}^{\mu}-q_{2}^{\mu}+\alpha_{2} p_{1}^{\mu}, \\
& p_{1}^{\prime \mu}=\left(1-\alpha_{2}\right) p_{1}^{\mu}, \quad \alpha_{2}=\frac{q_{1}^{2}}{2 q_{1} \cdot p_{1}},
\end{aligned}
$$

REGION 2:

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

$$
p_{r}^{\prime \mu}=q_{1}^{\mu}, \quad p_{1}^{\prime \mu}=p_{1}^{\mu}-q_{1}^{\mu}+\alpha_{1} p_{2}^{\mu}
$$

REGION 1:

$$
p_{2}^{\prime \mu}=\left(1-\alpha_{1}\right) p_{2}^{\mu}, \quad \alpha_{1}=\frac{q_{3}^{2}}{2 q_{3} \cdot p_{2}}
$$

$$
\begin{aligned}
y_{1 r}^{\prime} & =\frac{v_{1} \xi_{1,0}}{1-\left(1-v_{1}\right) \xi_{1,0}} \\
y_{2 r}^{\prime} & =\frac{\left(1-v_{1}\right)\left(1-\xi_{1,0}\right) \xi_{1,0}}{1-\left(1-v_{1}\right) \xi_{1,0}}
\end{aligned}
$$

REGION 2:

$$
p_{2}^{\prime \mu}=q_{2}^{\mu}, \quad p_{r}^{\prime \mu}=p_{2}^{\mu}-q_{2}^{\mu}+\alpha_{2} p_{1}^{\mu}, \quad \Longrightarrow \quad y_{1 r}^{\prime}=1-\xi_{2,0} \quad y_{2 r}^{\prime}=\frac{\left(1-v_{2}\right) \xi_{2,0}}{1-v_{2} \xi_{2,0}}
$$

$$
p_{1}^{\prime \mu}=\left(1-\alpha_{2}\right) p_{1}^{\mu}, \quad \alpha_{2}=\frac{q_{1}^{2}}{2 q_{1} \cdot p_{1}}, \quad \stackrel{y_{12}^{\prime}=\frac{v_{2}\left(1-\xi_{2,0}\right) \xi_{2,0}}{1-v_{2} \xi_{2,0}}}{\substack{ \\\hline}}
$$

which we solve using on-shell conditions and momentum conservation.

THE MOMENTUM MAPPING (THE MASSIVE CASE)

- Rewrite the emitter and the spectator in terms of two massless momenta

$$
\begin{aligned}
p_{i}^{\mu} & =\beta_{+} \hat{p}_{i}^{\mu}+\beta_{-} \hat{p}_{j}^{\mu} \\
p_{j}^{\mu} & =\left(1-\beta_{+}\right) \hat{p}_{i}^{\mu}+\left(1-\beta_{-}\right) \hat{p}_{j}^{\mu}
\end{aligned} \hat{p}_{i}^{\mu}+\hat{p}_{j}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}
$$

* Mapping and phase-space partition formally equal to the massless case: determine mapping parameters from on-shell conditions

$$
\begin{aligned}
p_{r}^{\prime \mu} & =q_{i}^{\mu} \\
p_{i}^{\prime \mu} & =\left(1-\alpha_{i}\right) \hat{p}_{i}^{\mu}+\left(1-\gamma_{i}\right) \hat{p}_{j}^{\mu}-q_{i}^{\mu} \\
p_{j}^{\prime \mu} & =\alpha_{i} \hat{p}_{i}^{\mu}+\gamma_{i} \hat{p}_{j}^{\mu}, \quad p_{k}^{\prime \mu}=p_{k}^{\mu}, \quad k \neq i, j
\end{aligned}
$$

- Quasi-collinear configurations are conveniently mapped such that the massless limit is smooth

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS

$$
\begin{aligned}
& I_{1}=\frac{4}{s_{12}} \int \frac{\xi_{1,0}^{-1} d\left[\xi_{1,0}\right] d\left[v_{1}\right]}{1-\left(1-2 v_{1}\right)^{2} \beta^{2}}\left(\theta\left(\mathcal{R}_{1}\right)+\left(1-\theta\left(\mathcal{R}_{1}\right)\right)\right) \quad I_{3} \\
& I_{2}=\frac{2}{s_{12}} \int \frac{\xi_{2,0}^{-1} \xi_{2}^{2} d\left[\xi_{2,0}\right] d\left[v_{2}\right]}{\left(1-\xi_{2,0}+\imath 0\right)\left(\xi_{2,0}+\beta \xi_{2}\left(1-2 v_{2}\right)-m^{2}\right)}\left(\theta\left(\mathcal{R}_{2}\right)+\left(1-\theta\left(\mathcal{R}_{2}\right)\right)\right)
\end{aligned}
$$

Both regions after applying the change of variables

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS

Both regions after applying the change of variables

BUILDING A LOCAL COUNTER-TERM

- Expand the dual propagators around a UV propagator...

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0}+\ldots \quad q_{\mathrm{UV}}=\ell+k_{\mathrm{UV}}
$$

- ... and adjust the subleading term depending on your renormalization scheme (for $\overline{\mathrm{MS}}$, subtract only the pole). For instance for the scalar two-point function:

$$
I=\int_{\ell} \frac{1}{\left(\ell^{2}-M^{2}+\imath 0\right)\left((\ell+p)^{2}-M^{2}+\imath 0\right)} \longmapsto I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{1}{\left(q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+\imath 0\right)^{2}}
$$

- The last step is to subtract the counter-term to the remaining term we had earlier

$$
\sigma_{V}^{(1, \mathrm{R})}=\bar{\sigma}_{V}^{(1)}-\sigma_{V}^{(1, \mathrm{UV})}
$$

SELF-ENERGY CORRECTIONS

- Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR

$$
\xrightarrow{\sim} 2=0=K\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{\epsilon_{\mathrm{IR}}}\right)
$$

SELF-ENERGY CORRECTIONS

- Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR

Has to be included in the UV counter-term

Will cancel the square of the virtual contributions

THE FOUR-DIMENSIONAL UNSUBTRACTION

COMPUTATION SAMPLES

COMPARISON WITH DREG

DREG	LTD / FDU
Modify the dimensions of the space-time to $d=4-2 \epsilon$	Computations without altering the $d=4$ space-time dimensions
Singularities manifest after integration as $\frac{1}{\epsilon}$ poles: - IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space - UV renormalized	Singularities killed before integration: - Unsubtracted summation over degenerate IR states at integrand level through a suitable momentum mapping - UV through local counter-terms
Virtual and real contributions are considered separately: phase-space with different number of final-state particles	Virtual and real contributions are considered simultaneously: more efficient Monte Carlo implementation

THE FOUR-DIMENSIONAL UNSUBTRACTION. . .

- ... is a new algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics
- ... allows for fully local cancellations of IR and UV singularities in four dimensions
- ... is optimized for smooth massless limits due to proper treatment of quasicollinear configurations
... allows the simultaneous generation of real and virtual corrections, which is advantageous, particularly for multi-leg processes

