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I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

I. The Loop-Tree Duality theorem 
at one loop



I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

THE LOOP-TREE DUALITY THEOREM
Cauchy residue theorem 
in the loop energy complex plane 

selects residues with definite positive energy 
and negative imaginary part (indeed in any 
coordinate system)

 

Feynman Propagator +i0: 
positive frequencies are propagated 
forward in time, and negative backward.

Catani, Gleisberg, Krauss, Rodrigo, Winter, JHEP 09 (2008) 065
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I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

THE LOOP-TREE DUALITY THEOREM
One-loop integrals (or scattering amplitudes in any relativistic, local and unitary 
QFT) represented as a linear combination of N single-cut phase-space integrals 

‣                                                      sets internal line on-shell, positive energy mode 

‣                                                          dual propagator, 

‣ LTD realized by modifying the customary +i0 prescription of the Feynman 
propagators, it compensates for the absence of multiple-cut contributions that 
appear in the Feynman Tree Theorem 

‣ Lorentz-covariant dual prescription with     a future-like vector; from now on,                   

‣ Integration domain now Euclidean, with the integration variable being the loop 
three-momentum
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I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

SINGULARITIES OF THE DUAL INTEGRANDS
▸ LTD: Equivalent to integrating along forward on-shell 

hyperboloids/light-cones (positive energy modes) 

▸ The dual loop integrand becomes singular when 
more than one internal propagators go on-shell while 
integrating 

▸ Cancellations of singularities among dual amplitudes 
at forward-forward intersections: dual +i0 prescription 
change signs (proof of consistency) 

▸ IR and threshold singularities illustrated by forward-
backward intersections

IR and threshold singularities are 
restricted to a compact region of 

the loop three-momentum

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160



I. THE LOOP-TREE DUALITY THEOREM AT ONE LOOP

EXPLICIT EXAMPLE: THE SCALAR THREE-POINT FUNCTION
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II. LOOP-TREE DUALITY AT TWO LOOPS

II. The Loop-Tree Duality theorem 
at two loops



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ Consider three sets of momenta 

▸ Two loops means… cutting twice: we need to 
impose two conditions on the couple             . 

▸ The idea is therefore to put on shell two 
particles belonging to two different sets

8
><

>:

↵1 = {`1 + pi, i 2 {0, . . . , r}}
↵2 = {`2 + pi, i 2 {r + 1, . . . , l}}
↵3 = {`1 + `2 + pi, i 2 {l + 1, . . . , N}}

(`1, `2)

Bierenbaum, Catani, Draggiotis, Rodrigo, JHEP 1010:073,2010



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ For a given set      , or a union of sets, we introduce     

▸ It is possible to show that these functions fulfill the following identity… 

▸ … which allows to iteratively extend LTD to two loops, and even beyond
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Bierenbaum, Catani, Draggiotis, Rodrigo, JHEP 1010:073,2010



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ With these notations, the LTD theorem at one 
loop can be written
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FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ With these notations, the LTD theorem at one 
loop can be written   

▸ Using this, and starting from the Feynman 
amplitude
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II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ With these notations, the LTD theorem at one 
loop can be written   

▸ Using this, and starting from the Feynman 
amplitude
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N =

Z

`1

N (`1, {pi}N )GF (↵1) = �
Z

`1

N (`1, {pi}N )GD(↵1)

A(2)
N =

Z

`1

Z

`2

N (`1, `2, {pi}N )GF (↵1)GF (↵2 [ ↵3)

= �
Z

`1

Z

`2

N (`1, `2, {pi}N )GF (↵1)GD(↵2 [ ↵3)

GF (↵1)GD(↵2)GD(↵3) +GF (↵1)GF (↵2)GD(↵3) +GF (↵1)GD(↵2)GF (↵3)
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II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

▸ With these notations, the LTD theorem at one 
loop can be written   

▸ Using this, and starting from the Feynman 
amplitude
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▸ Which leads to the master formula at two loops 

(                    completely interchangeable)↵1,↵2,↵3

II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

A(2)
N =

Z

`1

Z

`2

N (`1, `2, {pi}N )


GD(↵2)GD(↵1 [ ↵3) +GD(�↵2 [ ↵1)GD(↵3)�GF (↵1)GD(↵2)GD(↵3)

�

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

A(2)
N =

Z

`1

Z

`2

N (`1, `2, {pi}N )
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�

=
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↵3 ↵3

(                    completely interchangeable)↵1,↵2,↵3

�↵k = {�q, q 2 ↵k}

▸ Which leads to the master formula at two loops 

▸ Notice the minus sign in the second term

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS
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Z
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Z

`2

N (`1, `2, {pi}N )
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�(qj,0 + q(+)
j,0 )

(                    completely interchangeable)↵1,↵2,↵3

▸ Which leads to the master formula at two loops 

▸ Notice the minus sign in the second term 

▸ The on-shell delta is modified  
accordingly

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ Say we have a planar two-loop diagram with fixed external ordering, we can write 

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ Say we have a planar two-loop diagram with fixed external ordering, we can write 

p1
p2

pN�1

pN

p3

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

↵1 = {q1, q12, . . . , q1N}
↵2 = {qN+1}
↵3 = {q1, q12, . . . , q1N}

q1j = `1 + p1 + p2 + · · ·+ pj

qN+1 = `2

q1j = `1 + `2 + p1 + p2 + · · ·+ pj



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ This sums up to                                                 Feynman propagators for the uncut 
integrals… but applying LTD removes two of them, so for a given cut               , we 
have in the end              dual propagators

N(↵1 + ↵2 + ↵3) = 2N + 1

�̃(qi, qj)

2N � 1

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ This sums up to                                                 Feynman propagators for the uncut 
integrals… but applying LTD removes two of them, so for a given cut               , we 
have in the end              dual propagators 

▸ The independent scalar products we can encounter in the numerator are 

▸ This sums up to               scalar products 

N(↵1 + ↵2 + ↵3) = 2N + 1

�̃(qi, qj)

2N � 1

2N � 1

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

{`1 · pi, `2 · pi, `1 · `2 | i 2 {1, 2, . . . , N � 1}}



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ This sums up to                                                 Feynman propagators for the uncut 
integrals… but applying LTD removes two of them, so for a given cut               , we 
have in the end              dual propagators 

▸ The independent scalar products we can encounter in the numerator are 

▸ This sums up to               scalar products 

▸ It is therefore possible to rewrite the numerators in terms of dual propagators, and 
this in a unique way

N(↵1 + ↵2 + ↵3) = 2N + 1

�̃(qi, qj)

2N � 1

There are as many dual propagators as scalar products

2N � 1

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

{`1 · pi, `2 · pi, `1 · `2 | i 2 {1, 2, . . . , N � 1}}



II. LOOP-TREE DUALITY AT TWO LOOPS

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

▸ We can rewrite any planar two-loop integrand                                 as 

▸ The idea is to rearrange the expressions of the dual cuts so we have the minimum 
amount of independent coefficients                                  
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�
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(Before cutting)

(After cutting)
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ca0;a1,...,a2N�1

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

III. Procedure for local renormalisation 
at two-loop order



III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

ONE-LOOP PROCEDURE

▸ We consider a Feynman (uncut) integrand                     , and the replacement I(`, {pi}N )

S :

(
`2 ! �2 `2 + (1� �2)µ2

` · pi ! � ` · pi

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

ONE-LOOP PROCEDURE

▸ We consider a Feynman (uncut) integrand                     , and the replacement 

▸ Computing the local UV counter-term     of    is done by 

Applying the replacement     on       

Taking the limit 

Selecting the divergent terms, which gives (unfixed) 

Fixing the finite part so      integrates to the desired quantity (                  in       )  

I(`, {pi}N )

I

� ! 1

S I

C O(✏0) = 0 MS

C

S :

(
`2 ! �2 `2 + (1� �2)µ2

` · pi ! � ` · pi

C
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III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

ONE-LOOP PROCEDURE

▸ We consider a Feynman (uncut) integrand                     , and the replacement 

▸ Computing the local UV counter-term     of    is done by 

Applying the replacement     on       

Taking the limit 

Selecting the divergent terms, which gives (unfixed) 

Fixing the finite part so      integrates to the desired quantity (                  in       )  

▸ We then obtain a counter-term     and the quantity            is locally UV safe

I(`, {pi}N )

I

� ! 1

S I

C I � C

C O(✏0) = 0 MS

C

S :

(
`2 ! �2 `2 + (1� �2)µ2

` · pi ! � ` · pi

C

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



TWO-LOOP PROCEDURE (SINGLE UV)

▸ This time, we consider a two-loop Feynman integrand                            

▸ Applying the one-loop procedure to each loop momenta independently, using the 
replacements 

I(`1, `2, {pi}N )

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

S1 :

(
`21 ! �2 `21 + (1� �2)µ2

`1 · pi ! � `1 · pi
S2 :

(
`22 ! �2 `22 + (1� �2)µ2

`2 · pi ! � `2 · pi
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TWO-LOOP PROCEDURE (SINGLE UV)

▸ This time, we consider a two-loop Feynman integrand                            

▸ Applying the one-loop procedure to each loop momenta independently, using the 
replacements 

▸ We obtain two counter-terms,       and      , but                       is still not UV safe

I(`1, `2, {pi}N )

I � C1 � C2

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

S1 :

(
`21 ! �2 `21 + (1� �2)µ2

`1 · pi ! � `1 · pi
S2 :

(
`22 ! �2 `22 + (1� �2)µ2

`2 · pi ! � `2 · pi

C1 C2
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TWO-LOOP PROCEDURE (SINGLE UV)

▸ This time, we consider a two-loop Feynman integrand                            

▸ Applying the one-loop procedure to each loop momenta independently, using the 
replacements 

▸ We obtain two counter-terms,       and      , but                       is still not UV safe

I(`1, `2, {pi}N )

I � C1 � C2

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

S1 :

(
`21 ! �2 `21 + (1� �2)µ2

`1 · pi ! � `1 · pi
S2 :

(
`22 ! �2 `22 + (1� �2)µ2

`2 · pi ! � `2 · pi

C1 C2

We need to subtract the double UV limit 
(when both loop momenta go to infinity)

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



TWO-LOOP PROCEDURE (DOUBLE UV)

▸ Computing the double UV behavior is very similar to the one-loop procedure, with 
some subtleties. We consider the replacement

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

S12 :

8
><

>:

`2i ! �2 `2i + (1� �2)µ2

`1 · `2 ! �2 `1 · `2 � (1� �2)µ2/2

`i · pk ! � `i · pk

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



TWO-LOOP PROCEDURE (DOUBLE UV)

▸ Computing the double UV behavior is very similar to the one-loop procedure, with 
some subtleties. We consider the replacement 

▸ We then take                       , and the counter-term is obtained by 

Applying the replacement        on       

Taking the limit 

Selecting the divergent terms, which gives (unfixed)  

Fixing the finite part so         integrates to the desired quantity (                  in       ) 

I � C1 � C2

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

� ! 1

O(✏0) = 0 MSC12

S12 I � C1 � C2

C12

S12 :

8
><

>:

`2i ! �2 `2i + (1� �2)µ2

`1 · `2 ! �2 `1 · `2 � (1� �2)µ2/2

`i · pk ! � `i · pk

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



TWO-LOOP PROCEDURE (DOUBLE UV)

▸ This iterative way is similar to what is done in DREG, but you don’t need to integrate 
anything to compute the actual counter-terms 

▸ In addition to fixing the potential additional singularities introduced by      and       , 
        also removes singularities occurring when 

▸                                              is therefore completely free of any UV singularity, and, after 
applying LTD, can safely be integrated in four dimensions!

III. LOCAL CANCELLATION OF UV SINGULARITIES AT TWO LOOPS

C1 C2

C12 (`1, `2) ! (1,1)

Iren = I � C1 � C2 � C12

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

IV. Application to                  at two loopsH ! ��



IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

‘‘NON-MIXED’’ QED CORRECTIONS

p1

p2

p12

p1

p2

p12

p1

p2

p12

12 diagrams with a top as the internal particle
37 diagrams with a charged scalar as the internal particle

(Blue lines are photons)

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



SIMPLIFYING THE MASTER FORMULA

▸ If the Higgs boson is on shell, we are below threshold, i.e. 

▸ This simplifies a lot the two-loop representation of LTD

4M2
f > M2

H

No imaginary part Prescriptions unnecessary


GD(↵1)GD(↵2)GF (↵3) +GF (↵1)GD(�↵2)GD(↵3) +GD(↵1)GF (↵2)GD(↵3)

�


GD(↵2)GD(↵1 [ ↵3) +GD(�↵2 [ ↵1)GD(↵3)�GF (↵1)GD(↵2)GD(↵3)

�

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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SIMPLIFYING THE MASTER FORMULA

▸ If the Higgs boson is on shell, we are below threshold, i.e. 

▸ This simplifies a lot the two-loop representation of LTD

No imaginary part Prescriptions unnecessary


GD(↵1)GD(↵2)GF (↵3) +GF (↵1)GD(�↵2)GD(↵3) +GD(↵1)GF (↵2)GD(↵3)

�


GD(↵2)GD(↵1 [ ↵3) +GD(�↵2 [ ↵1)GD(↵3)�GF (↵1)GD(↵2)GD(↵3)

�

4 double cuts 4 double cuts 14 double cuts

4M2
f > M2

H

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



▸ The 22 dual double cuts can be written with 9 generators, for instance 

▸ The        are scalar coefficients and depend only on the reduced mass 
and the dimension   , while the       are normalized dual propagators

UNIVERSALITY OF THE DUAL AMPLITUDES
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IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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UNIVERSALITY OF THE DUAL AMPLITUDES

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

c(t)4,u = �d� 2

4
, c(t)4,nu = �d� 2

4
, c(t)7 = �1

4
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▸ There are three things to renormalize: 

The Higgs boson vertex 

The photon vertices 

The self-energies

SINGLE UV COUNTER-TERMS

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



▸ There are three things to renormalize: 

The Higgs boson vertex 

The photon vertices 

The self-energies 

▸ The single UV counter-terms are built by taking     or                         to infinity in the 
relevant diagrams 

▸ For instance, for the Higgs boson vertex correction

SINGLE UV COUNTER-TERMS

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

`1 `12 = `1 + `2

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143



▸ There are two contributing diagrams for the top, three for the scalar and the 
counter-term is computed by taking                at integrand level 

▸ The Higgs vertex corrections read, for both particles,

HIGGS BOSON VERTEX RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

�(1,f)
H,UV =(e ef )

2

Z

`1

(GF (q1,UV))
2
⇣
c(f)H,UV �GF (q1,UV) d

(f)
H,UV µ2
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⌘
�(0,f)
H

=(e ef )
2 S̃✏

16⇡2

✓
µ2
UV

µ2

◆�✏ C(f)
H,UV

✏
�(0,f)
H ,

`1 ! 1
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▸ There are two contributing diagrams for the top, three for the scalar and the 
counter-term is computed by taking                at integrand level 

▸ The Higgs vertex corrections read, for both particles,

HIGGS BOSON VERTEX RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

�(1,f)
H,UV =(e ef )

2

Z

`1

(GF (q1,UV))
2
⇣
c(f)H,UV �GF (q1,UV) d

(f)
H,UV µ2

UV

⌘
�(0,f)
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=(e ef )
2 S̃✏

16⇡2

✓
µ2
UV

µ2

◆�✏ C(f)
H,UV

✏
�(0,f)
H ,

Depends on what we renormalise (here the Higgs vertex)

`1 ! 1

Depends on the renormalisation scheme

Is a combination of               and                and is obtained by integrating in     dimensionsc(f)H,UV d(f)H,UV d
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▸ The idea is exactly the same (there are more diagrams though), with this time the 
limit that needs to be considered being  

▸ The corresponding counter-term for the top reads

PHOTON VERTEX RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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▸ The idea is exactly the same (there are more diagrams though), with this time the 
limit that needs to be considered being  

▸ The corresponding counter-term for the top reads 

▸ The additional term              integrates to 0 in    dimensions but is needed for local 
renormalisation

PHOTON VERTEX RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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▸ Accorded to the replacement       , the double UV counter-term must have the form

DOUBLE UV RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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▸ Accorded to the replacement       , the double UV counter-term must have the form 

▸ By using IBP, we can show that 

▸ By replacing the integrals by their values in    dimensions, we can choose           to fix 
the renormalisation scheme

DOUBLE UV RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

A(2,f)
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▸ The total double UV counter-terms for the top and the scalar read

DOUBLE UV RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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▸ The total double UV counter-terms for the top and the scalar read 

▸ Even though they do not actually renormalise anything, their presence is still 
necessary to remove local double UV divergences  

▸ This is very similar to the one-loop case: it is finite, but still requires the presence of 
a local counter-term to obtain the correct result

DOUBLE UV RENORMALISATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS
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NUMERICAL INTEGRATION

▸ We use the following parametrizations for the amplitude 

▸ And we compactify the integration domain by using the change of variables 

`1 =

p
s12
2

⇠1 (sin(✓1), 0, cos(✓1))

`12 = `1 + `2 =

p
s12
2

⇠12 (sin(✓12) cos('12), sin(✓12) sin('12), cos(✓12))

p1 =

p
s12
2

(0, 0, 1)

p2 =

p
s12
2

(0, 0,�1)

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

⇠i !
xi

1� xi
for

xi 2 [0, 1]
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NUMERICAL INTEGRATION

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

μ��=��/�

μ��=�ϕ

Analytical

LTD

� � � � �
-���

-���

-���

-���

���
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�(�
�ϕ
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LTD
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���

���

���

���

���

���

��=��
� /��
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Results in the       scheme, with two different values of the renormalisation scaleMS

Integration time (with Mathematica on a desktop computer) is              for each pointO(10)
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SUMMARY & OUTLOOK

▸ The Loop-Tree Duality theorem has been extended to two loops and applied to the  
                process at NLO, in a (almost) fully automatized way 

▸ All UV divergences have been dealt with by computing local counter-terms, 
allowing a straightforward numerical integration in four dimensions

H ! ��

What we have achieved…

CONCLUSION



CONCLUSION

SUMMARY & OUTLOOK

▸ The Loop-Tree Duality theorem has been extended to two loops and applied to the  
                process at NLO, in a (almost) fully automatized way 

▸ All UV divergences have been dealt with by computing local counter-terms, 
allowing a straightforward numerical integration in four dimensions 

▸ Fully functioning automated code at two-loop, from input to plot 

▸ Dealing with potential physical threshold singularities (contour deformation) and 
compute the respective imaginary part 

▸ Dealing with potential infrared singularities (i.e. extending FDU at two loops)

H ! ��

What we have achieved…

What remains to be done…



CONCLUSION

Thank you!
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II. THE FOUR-DIMENSIONAL UNSUBTRACTION

DEALING WITH THE SINGULARITIES

Infrared singularities Ultraviolet singularities 

Cancelled by the 
real contributions

Mapping real kinematics 
to match the virtual one

Dealt with 
renormalization

Building integrand-level counter- 
terms to achieve local cancellations

and(|`| ! 0 ` k pi) (|`| ! 1)

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160



II. LOCAL CANCELLATION OF INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space 
into several regions (there cannot be more than one collinear singularity in a 
given region of the phase-space)

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160



II. LOCAL CANCELLATION OF INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space 
into several regions (there cannot be more than one collinear singularity in a 
given region of the phase-space) 

2. Implementing an optimized mapping in each region, to allow a fully local 
cancellation of IR singularities with those present in the dual contributions

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

In Region  :i
p0r = qi , p0i = pi � qi + ↵i pj

p0j = (1� ↵i)pj , p0k = pk(qi || pi)



II. LOCAL CANCELLATION OF UV SINGULARITIES

BUILD LOCAL UV COUNTER-TERMS

▸ Expand the uncut and unintegrated amplitude around the UV propagator 

▸ By choosing                , this is equivalent to applying the following replacement… 

▸ … and then expanding around    and taking only the divergent terms 

▸ For the scalar two-point function 

▸ Apply LTD on this local counter-term, and subtract it from the amplitude

kUV = 0

�

I =

Z

`

1

(`2 �M2 + ı0)((`+ p)2 �M2 + ı0)
IcntUV =

Z

`

1

(q2UV � µ2
UV + ı0)2

GF (qi) =
1

q2UV � µ2
UV + ı0

+ . . . qUV = `+ kUV

Becker, Reuschle, Weinzierl, JHEP 1012:013,2010

(
`2 ! �2q2UV + (1� �2)µ2

UV

` · pi ! � qUV · pi



II. THE FOUR-DIMENSIONAL UNSUBTRACTION

COMPUTATION SAMPLES

�/Z ! qqThree-point 
scalar function

H ! qq � ! qq



INFRARED SINGULARITIES

KINOSHITA-LEE-NAUENBERG THEOREM

▸ The Standard Model is infrared finite 

▸ In the traditional approach, the singularities have different 
signs after integration 

▸ Within FDU, cancellations are performed locally

+



INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions 
(there cannot be more than one given type of IR singularity in a given region of the phase-
space), for instance



INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions 
(there cannot be more than one given type of IR singularity in a given region of the phase-
space), for instance
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INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions 
(there cannot be more than one given type of IR singularity in a given region of the phase-
space), for instance

REGION 1

⇠1,0 ! 0

v1 ! 0

v2 ! 1

REGION 2
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�
y0i,r = (2p0i · p0r)/s12
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CollinearSoft

Needed to cancel…
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INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

REGION 2:

2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR 
singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

REGION 1:



INFRARED SINGULARITIES

THE MOMENTUM MAPPING
Defining the mappings requires two steps:

REGION 1:

REGION 2:

2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR 
singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

which we solve using on-shell conditions and momentum conservation.



INFRARED SINGULARITIES

THE MOMENTUM MAPPING (THE MASSIVE CASE)

▸ Rewrite the emitter and the spectator in terms of two massless momenta 

▸ Mapping and phase-space partition formally equal to the massless case: determine mapping 
parameters from on-shell conditions 

▸ Quasi-collinear configurations are conveniently mapped such that the massless limit is smooth

pµi = �+ p̂µi + �� p̂µj

pµj = (1� �+) p̂
µ
i + (1� ��) p̂

µ
j p̂µi + p̂µj = pµi + pµj

p0µr = qµi ,

p0µi = (1� ↵i) p̂
µ
i + (1� �i) p̂

µ
j � qµi ,

p0µj = ↵i p̂
µ
i + �i p̂

µ
j , p0µk = pµk , k 6= i, j



INFRARED SINGULARITIES

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS
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Both regions after applying the change of variables



INFRARED SINGULARITIES

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS
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Ultraviolet singularities remain…
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ULTRAVIOLET SINGULARITIES

BUILDING A LOCAL COUNTER-TERM

▸ Expand the dual propagators around a UV propagator… 

▸ … and adjust the subleading term depending on your renormalization scheme    
(for      , subtract only the pole). For instance for the scalar two-point function: 

▸ The last step is to subtract the counter-term to the remaining term we had earlier

GF (qi) =
1

q2UV � µ2
UV + i0

+ . . . qUV = `+ kUV

MS

I =

Z

`

1

(`2 �M2 + ı0)((`+ p)2 �M2 + ı0)
IcntUV =

Z

`

1

(q2UV � µ2
UV + ı0)2

�(1,R)
V = �(1)

V � �(1,UV)
V



ULTRAVIOLET SINGULARITIES

SELF-ENERGY CORRECTIONS

▸ Wave function corrections usually ignored for massless partons, but they feature 
non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary 
to map the squares of the real amplitudes in the IR

= 0 = K

✓
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✏UV
� 1

✏IR

◆



ULTRAVIOLET SINGULARITIES

SELF-ENERGY CORRECTIONS

▸ Wave function corrections usually ignored for massless partons, but they feature 
non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary 
to map the squares of the real amplitudes in the IR

Has to be included in 
the UV counter-term

Will cancel the square of 
the virtual contributions

= 0 = K

✓
1

✏UV
� 1

✏IR

◆



THE FOUR-DIMENSIONAL UNSUBTRACTION

COMPUTATION SAMPLES

�/Z ! qqThree-point 
scalar function

H ! qq � ! qq



THE FOUR-DIMENSIONAL UNSUBTRACTION

COMPARISON WITH DREG

DREG LTD / FDU
Modify the dimensions of the space-time to Computations without altering the            space-time 

dimensions 

Singularities manifest after integration as     poles: 

‣ IR cancelled through suitable subtraction 
terms, which need to be integrated over the 
unresolved phase-space 

‣ UV renormalized

Singularities killed before integration:  

‣ Unsubtracted summation over degenerate IR 
states at integrand level through a suitable 
momentum mapping  

‣ UV through local counter-terms

Virtual and real contributions are considered 
separately: phase-space with different number of 
final-state particles

Virtual and real contributions are considered 
simultaneously: more efficient Monte Carlo 
implementation

d = 4� 2✏
d = 4

1

✏



CONCLUSION

THE FOUR-DIMENSIONAL UNSUBTRACTION…

▸ … is a new algorithm/regularization scheme for higher-orders in perturbative QFT 
based on LTD: summation over degenerate soft, final-state collinear singularities 
and quasi-collinear configurations achieved through a mapping of momenta 
between real and virtual kinematics 

▸ … allows for fully local cancellations of IR and UV singularities in four dimensions 

▸ … is optimized for smooth massless limits due to proper treatment of quasi-
collinear configurations 

▸ … allows the simultaneous generation of real and virtual corrections, which is 
advantageous, particularly for multi-leg processes


