UNIVERSAL FOUR-DIMENSIONAL REPRESENTATION OF HIGGS BOSON TO TWO PHOTONS AT TWO LOOPS THROUGH THE LOOP-TREE DUALITY

FÉLIX DRIENCOURT-MANGIN

In collaboration with G. Rodrigo, G. F. R. Sborlini & W. J. Torres Bobadilla

PARTICLEFACE2019, Coimbra, 26th February

OUTLINE

I. The Loop-Tree Duality theorem at one loop

II. The Loop-Tree Duality theorem at two loops

III. Procedure for local renormalisation at two-loop order

IV. Application to $H \rightarrow \gamma \gamma$ at two loops

I. The Loop-Tree Duality theorem at one loop

Catani, Gleisberg, Krauss, Rodrigo, Winter, JHEP 09 (2008) 065

THE LOOP-TREE DUALITY THEOREM

Feynman Propagator +i0:

positive frequencies are propagated forward in time, and negative backward.

$$G_F(q_i) = \frac{1}{q_i^2 - m_i^2 + i0}$$
$$q_i = \ell + \sum_{k=1}^{i} p_k$$

Cauchy residue theorem

in the loop energy complex plane

selects residues with definite **positive energy and negative imaginary part** (indeed in any coordinate system)

$$q_{i,0} = \pm \sqrt{\boldsymbol{q}_i^2 + m_i^2 - \imath 0}$$

$$q_{i,0}^{(+)} = +\sqrt{\boldsymbol{q}_i^2 + m_i^2 - \imath 0}$$

Catani, Gleisberg, Krauss, Rodrigo, Winter, JHEP 09 (2008) 065

THE LOOP-TREE DUALITY THEOREM

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary QFT) represented as a linear combination of *N* **single-cut phase-space** integrals

$$\int_{\ell} \prod_{i} G_{F}(q_{i}) = -\sum_{i} \int_{\ell} \tilde{\delta}(q_{i}) \prod_{j \neq i} G_{D}(q_{i}; q_{j}) \left| \underbrace{\int_{p_{N}} \int_{q_{i}} \int_{p_{i}} \int_{q_{i}} \int_{q_{i$$

• $\tilde{\delta}(q_i) = i 2\pi \theta(q_{i,0}) \delta(q_i^2 - m_i^2)$ sets internal line on-shell, positive energy mode

- $G_D(q_i;q_j) = \frac{1}{q_j^2 m_j^2 i0 \eta k_{ji}}$ dual propagator, $k_{ji} = q_j q_i$
- LTD realized by modifying the customary +i0 prescription of the Feynman propagators, it compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem
- Lorentz-covariant dual prescription with η a **future-like** vector; from now on, $\eta^{\mu} = (1, \mathbf{0})$
- Integration domain now Euclidean, with the integration variable being the loop three-momentum

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

SINGULARITIES OF THE DUAL INTEGRANDS

ξz

- LTD: Equivalent to integrating along forward on-shell hyperboloids/light-cones (positive energy modes)
- The dual loop integrand becomes singular when more than one internal propagators go on-shell while integrating
- **Cancellations** of singularities among dual amplitudes at forward-forward intersections: dual +i0 prescription change signs (proof of consistency)
- IR and threshold singularities illustrated by forwardbackward intersections

IR and threshold singularities are restricted to a **compact region** of the loop three-momentum

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

EXPLICIT EXAMPLE: THE SCALAR THREE-POINT FUNCTION

Modulus of the loop three-momentum

$$d[\xi_i] = \frac{(4\pi)^{\epsilon-2}}{\Gamma(1-\epsilon)} \left(\frac{s_{12}}{\mu^2}\right)^{-\epsilon} \xi_i^{-2\epsilon} d\xi_i$$
$$d[v_i] = v_i (1-v_i)^{-\epsilon} dv_i$$

Polar angle of the loop three-momentum

II. The Loop-Tree Duality theorem at two loops

Bierenbaum, Catani, Draggiotis, Rodrigo, JHEP 1010:073,2010

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

- Consider three sets of momenta
 - $\begin{cases} \alpha_1 = \{\ell_1 + p_i, & i \in \{0, \dots, r\}\} \\ \alpha_2 = \{\ell_2 + p_i, & i \in \{r+1, \dots, l\}\} \\ \alpha_3 = \{\ell_1 + \ell_2 + p_i, & i \in \{l+1, \dots, N\}\} \end{cases} \bullet$
- Two loops means... cutting twice: we need to impose two conditions on the couple (ℓ_1, ℓ_2) .
- The idea is therefore to put on shell two particles belonging to two different sets

Bierenbaum, Catani, Draggiotis, Rodrigo, JHEP 1010:073,2010

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

For a given set α_k , or a union of sets, we introduce

$$G_F(\alpha_k) = \prod_{i \in \alpha_k} G_F(q_i) , \quad G_D(\alpha_k) = \sum_{i \in \alpha_k} \tilde{\delta}(q_i) \prod_{\substack{j \in \alpha_k \\ j \neq i}} G_D(q_i; q_j)$$

It is possible to show that these functions fulfill the following identity...

 $G_D(\alpha_i \cup \alpha_j) = G_D(\alpha_i) G_D(\alpha_j) + G_D(\alpha_i) G_F(\alpha_j) + G_F(\alpha_i) G_D(\alpha_j)$

... which allows to iteratively extend LTD to two loops, and even beyond

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

 With these notations, the LTD theorem at one loop can be written

$$\mathcal{A}_{N}^{(1)} = \int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) = -\int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{D}(\alpha_{1})$$

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

 With these notations, the LTD theorem at one loop can be written

$$\mathcal{A}_{N}^{(1)} = \int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) = -\int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{D}(\alpha_{1})$$

 Using this, and starting from the Feynman amplitude

$$\mathcal{A}_N^{(2)} = \int_{\ell_1} \int_{\ell_2} \mathcal{N}(\ell_1, \ell_2, \{p_i\}_N) G_F(\alpha_1) \underbrace{G_F(\alpha_2 \cup \alpha_3)}_{\bullet}$$
$$= \bigcirc \int_{\ell_1} \int_{\ell_2} \mathcal{N}(\ell_1, \ell_2, \{p_i\}_N) G_F(\alpha_1) \underbrace{G_D(\alpha_2 \cup \alpha_3)}_{\bullet}$$

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

 With these notations, the LTD theorem at one loop can be written

$$\mathcal{A}_{N}^{(1)} = \int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) = -\int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{D}(\alpha_{1})$$

 Using this, and starting from the Feynman amplitude

$$\mathcal{A}_N^{(2)} = \int_{\ell_1} \int_{\ell_2} \mathcal{N}(\ell_1, \ell_2, \{p_i\}_N) G_F(\alpha_1) \underbrace{G_F(\alpha_2 \cup \alpha_3)}_{\bullet}$$
$$= \bigcirc \int_{\ell_1} \int_{\ell_2} \mathcal{N}(\ell_1, \ell_2, \{p_i\}_N) G_F(\alpha_1) \underbrace{G_D(\alpha_2 \cup \alpha_3)}_{\bullet}$$

 $> G_F(\alpha_1)G_D(\alpha_2)G_D(\alpha_3) + G_F(\alpha_1)G_F(\alpha_2)G_D(\alpha_3) + G_F(\alpha_1)G_D(\alpha_2)G_F(\alpha_3)$

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

 With these notations, the LTD theorem at one loop can be written

$$\mathcal{A}_{N}^{(1)} = \int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) = -\int_{\ell_{1}} \mathcal{N}(\ell_{1}, \{p_{i}\}_{N}) G_{D}(\alpha_{1})$$

 Using this, and starting from the Feynman amplitude

$$\mathcal{A}_{N}^{(2)} = \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) G_{F}(\alpha_{2} \cup \alpha_{3})$$
$$= \bigoplus \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) G_{F}(\alpha_{1}) G_{D}(\alpha_{2} \cup \alpha_{3})$$

 $G_F(\alpha_1)G_D(\alpha_2)G_D(\alpha_3) + G_F(\alpha_1)G_F(\alpha_2)G_D(\alpha_3) + G_F(\alpha_1)G_D(\alpha_2)G_F(\alpha_3)$ $Ok \qquad -G_D(-\alpha_2 \cup \alpha_1) \qquad -G_D(\alpha_1 \cup \alpha_3)$

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

Which leads to the master formula at two loops

$$\mathcal{A}_{N}^{(2)} = \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) \left[G_{D}(\alpha_{2}) G_{D}(\alpha_{1} \cup \alpha_{3}) + G_{D}(-\alpha_{2} \cup \alpha_{1}) G_{D}(\alpha_{3}) - G_{F}(\alpha_{1}) G_{D}(\alpha_{2}) G_{D}(\alpha_{3}) \right]$$

($\alpha_1, \alpha_2, \alpha_3$ completely interchangeable)

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

Which leads to the master formula at two loops

$$\mathcal{A}_{N}^{(2)} = \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) \left[G_{D}(\alpha_{2}) G_{D}(\alpha_{1} \cup \alpha_{3}) + G_{D}(-\alpha_{2} \cup \alpha_{1}) G_{D}(\alpha_{3}) - G_{F}(\alpha_{1}) G_{D}(\alpha_{2}) G_{D}(\alpha_{3}) \right]$$

($\alpha_1, \alpha_2, \alpha_3$ completely interchangeable)

• Notice the minus sign in the second term $-lpha_k=\{-q,\;q\inlpha_k\}$

GENERALIZATION OF THE LTD THEOREM AT TWO LOOPS

Which leads to the master formula at two loops

$$\mathcal{A}_{N}^{(2)} = \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) \left[G_{D}(\alpha_{2}) G_{D}(\alpha_{1} \cup \alpha_{3}) + G_{D}(-\alpha_{2} \cup \alpha_{1}) G_{D}(\alpha_{3}) - G_{F}(\alpha_{1}) G_{D}(\alpha_{2}) G_{D}(\alpha_{3}) \right]$$

($\alpha_1, \alpha_2, \alpha_3$ completely interchangeable)

- Notice the minus sign in the second term $-lpha_k=\{-q,\ q\in lpha_k\}$
- The on-shell delta is modified accordingly

$$\tilde{\delta}(-q_j) = \frac{i\pi}{q_{j,0}^{(+)}} \,\delta(q_{j,0} + q_{j,0}^{(+)})$$

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

Say we have a **planar** two-loop diagram with **fixed external ordering**, we can write

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

Say we have a **planar** two-loop diagram with **fixed external ordering**, we can write

$$\alpha_{1} = \{q_{1}, q_{12}, \dots, q_{1N}\}$$

$$\alpha_{2} = \{q_{N+1}\}$$

$$\alpha_{3} = \{q_{\overline{1}}, q_{\overline{12}}, \dots, q_{\overline{1N}}\}$$

$$q_{1j} = \ell_1 + p_1 + p_2 + \dots + p_j$$

$$q_{N+1} = \ell_2$$

$$q_{\overline{1j}} = \ell_1 + \ell_2 + p_1 + p_2 + \dots + p_j$$

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

• This sums up to $N(\alpha_1 + \alpha_2 + \alpha_3) = 2N + 1$ Feynman propagators for the **uncut** integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}(q_i, q_j)$, we have in the end 2N - 1 dual propagators

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- This sums up to $N(\alpha_1 + \alpha_2 + \alpha_3) = 2N + 1$ Feynman propagators for the **uncut** integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}(q_i, q_j)$, we have in the end 2N 1 dual propagators
- > The **independent** scalar products we can encounter in the numerator are

$$\{\ell_1 \cdot p_i, \ \ell_2 \cdot p_i, \ \ell_1 \cdot \ell_2 \ | \ i \in \{1, \ 2, \dots, \ N-1\}\}$$

▶ This sums up to 2N - 1 scalar products

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

- This sums up to $N(\alpha_1 + \alpha_2 + \alpha_3) = 2N + 1$ Feynman propagators for the **uncut** integrals... but applying LTD removes two of them, so for a given cut $\tilde{\delta}(q_i, q_j)$, we have in the end 2N 1 dual propagators
- > The **independent** scalar products we can encounter in the numerator are

$$\{\ell_1 \cdot p_i, \ \ell_2 \cdot p_i, \ \ell_1 \cdot \ell_2 \ | \ i \in \{1, \ 2, \dots, \ N-1\}\}$$

• This sums up to 2N - 1 scalar products

> There are as many dual propagators as scalar products

It is therefore possible to rewrite the numerators in terms of dual propagators, and this in a unique way

ALGEBRAIC REDUCTION OF TWO-LOOP AMPLITUDES

• We can rewrite any planar two-loop integrand $\mathcal{A}_N^{(2)}(\ell_1,\ell_2,\{p_i\}_N)$ as

$$\begin{aligned} \mathcal{A}_{N}^{(2)} &= \int_{\ell_{1}} \int_{\ell_{2}} \mathcal{N}(\ell_{1}, \ell_{2}, \{p_{i}\}_{N}) G_{F}(\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}) + \text{perm.} \end{aligned}$$
(Before cutting)
$$&= \int_{\ell_{1}} \int_{\ell_{2}} \sum_{j,k} \left[\frac{c_{a_{0};a_{1},...,a_{2N-1}}(\{p_{i}\}_{N})}{(\kappa_{j})^{a_{0}}(d_{i_{1}})^{a_{1}}(d_{i_{2}})^{a_{2}} \cdots (d_{i_{2N-1}})^{a_{2N-1}}} \right] \tilde{\delta}(q_{j}, q_{k}) + \text{perm.} \end{aligned}$$
(After cutting)

• The idea is to rearrange the expressions of the dual cuts so we have the minimum amount of independent coefficients $c_{a_0;a_1,...,a_{2N-1}}$

III. Procedure for local renormalisation at two-loop order

ONE-LOOP PROCEDURE

• We consider a Feynman (uncut) integrand $I(\ell, \{p_i\}_N)$, and the replacement

$$S: \begin{cases} \ell^2 \to \lambda^2 \,\ell^2 + (1-\lambda^2)\mu^2 \\ \ell \cdot p_i \to \lambda \,\ell \cdot p_i \end{cases}$$

ONE-LOOP PROCEDURE

• We consider a Feynman (uncut) integrand $I(\ell, \{p_i\}_N)$, and the replacement

$$S: \begin{cases} \ell^2 \to \lambda^2 \,\ell^2 + (1-\lambda^2)\mu^2 \\ \ell \cdot p_i \to \lambda \,\ell \cdot p_i \end{cases}$$

- Computing the **local UV counter-term** *C* of *I* is done by
 - Applying the replacement S on I
 - Taking the limit $\lambda \to \infty$
 - Selecting the divergent terms, which gives (unfixed) C
 - Fixing the finite part so C integrates to the desired quantity ($\mathcal{O}(\epsilon^0) = 0$ in $\overline{\mathrm{MS}}$)

ONE-LOOP PROCEDURE

• We consider a Feynman (uncut) integrand $I(\ell, \{p_i\}_N)$, and the replacement

$$S: \begin{cases} \ell^2 \to \lambda^2 \,\ell^2 + (1-\lambda^2)\mu^2 \\ \ell \cdot p_i \to \lambda \,\ell \cdot p_i \end{cases}$$

- Computing the **local UV counter-term** *C* of *I* is done by
 - Applying the replacement S on I
 - Taking the limit $\lambda o \infty$
 - Selecting the divergent terms, which gives (unfixed) C
 - Fixing the finite part so C integrates to the desired quantity ($\mathcal{O}(\epsilon^0) = 0$ in $\overline{\mathrm{MS}}$)
- We then obtain a counter-term C and the quantity I C is **locally UV safe**

TWO-LOOP PROCEDURE (SINGLE UV)

This time, we consider a two-loop Feynman integrand $I(\ell_1, \ell_2, \{p_i\}_N)$

Applying the one-loop procedure to each loop momenta independently, using the replacements

$$S_1: \begin{cases} \ell_1^2 \to \lambda^2 \, \ell_1^2 + (1-\lambda^2) \mu^2 \\ \ell_1 \cdot p_i \to \lambda \, \ell_1 \cdot p_i \end{cases} \qquad S_2: \begin{cases} \ell_2^2 \to \lambda^2 \, \ell_2^2 + (1-\lambda^2) \mu^2 \\ \ell_2 \cdot p_i \to \lambda \, \ell_2 \cdot p_i \end{cases}$$

TWO-LOOP PROCEDURE (SINGLE UV)

This time, we consider a two-loop Feynman integrand $I(\ell_1, \ell_2, \{p_i\}_N)$

Applying the one-loop procedure to each loop momenta independently, using the replacements

$$S_1: \begin{cases} \ell_1^2 \to \lambda^2 \,\ell_1^2 + (1-\lambda^2)\mu^2 \\ \ell_1 \cdot p_i \to \lambda \,\ell_1 \cdot p_i \end{cases} \qquad S_2: \begin{cases} \ell_2^2 \to \lambda^2 \,\ell_2^2 + (1-\lambda^2)\mu^2 \\ \ell_2 \cdot p_i \to \lambda \,\ell_2 \cdot p_i \end{cases}$$

We obtain two counter-terms, C_1 and C_2 , but $I - C_1 - C_2$ is still **not UV safe**

TWO-LOOP PROCEDURE (SINGLE UV)

This time, we consider a two-loop Feynman integrand $I(\ell_1, \ell_2, \{p_i\}_N)$

Applying the one-loop procedure to each loop momenta independently, using the replacements

$$S_1: \begin{cases} \ell_1^2 \to \lambda^2 \,\ell_1^2 + (1-\lambda^2)\mu^2 \\ \ell_1 \cdot p_i \to \lambda \,\ell_1 \cdot p_i \end{cases} \qquad S_2: \begin{cases} \ell_2^2 \to \lambda^2 \,\ell_2^2 + (1-\lambda^2)\mu^2 \\ \ell_2 \cdot p_i \to \lambda \,\ell_2 \cdot p_i \end{cases}$$

We obtain two counter-terms, C_1 and C_2 , but $I - C_1 - C_2$ is still **not UV safe**

We need to subtract the double UV limit (when both loop momenta go to infinity)

TWO-LOOP PROCEDURE (DOUBLE UV)

Computing the double UV behavior is very similar to the one-loop procedure, with some subtleties. We consider the replacement

$$S_{12}: \begin{cases} \ell_i^2 \to \lambda^2 \, \ell_i^2 + (1 - \lambda^2) \mu^2 \\ \ell_1 \cdot \ell_2 \to \lambda^2 \, \ell_1 \cdot \ell_2 - (1 - \lambda^2) \mu^2 / 2 \\ \ell_i \cdot p_k \to \lambda \, \ell_i \cdot p_k \end{cases}$$

TWO-LOOP PROCEDURE (DOUBLE UV)

Computing the double UV behavior is very similar to the one-loop procedure, with some subtleties. We consider the replacement

$$S_{12}: \begin{cases} \ell_i^2 \to \lambda^2 \, \ell_i^2 + (1 - \lambda^2) \mu^2 \\ \ell_1 \cdot \ell_2 \to \lambda^2 \, \ell_1 \cdot \ell_2 - (1 - \lambda^2) \mu^2 / 2 \\ \ell_i \cdot p_k \to \lambda \, \ell_i \cdot p_k \end{cases}$$

- We then take $I C_1 C_2$, and the counter-term is obtained by
 - Applying the replacement S_{12} on $I C_1 C_2$
 - Taking the limit $\lambda \to \infty$
 - Selecting the divergent terms, which gives (unfixed) C_{12}
 - Fixing the finite part so C_{12} integrates to the desired quantity ($\mathcal{O}(\epsilon^0) = 0$ in $\overline{\mathrm{MS}}$)

TWO-LOOP PROCEDURE (DOUBLE UV)

This iterative way is similar to what is done in DREG, but you don't need to integrate anything to compute the actual counter-terms

In addition to fixing the potential additional singularities introduced by C_1 and C_2 , C_{12} also removes singularities occurring when $(\ell_1, \ell_2) \to (\infty, \infty)$

• $I_{ren} = I - C_1 - C_2 - C_{12}$ is therefore completely free of any UV singularity, and, after applying LTD, can safely be integrated in four dimensions!

IV. Application to $H \rightarrow \gamma \gamma$ at two loops

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

"NON-MIXED" QED CORRECTIONS

12 diagrams with a top as the internal particle 37 diagrams with a charged scalar as the internal particle

(Blue lines are photons)

SIMPLIFYING THE MASTER FORMULA

If the Higgs boson is on shell, we are below threshold, i.e. $4M_f^2 > M_H^2$

No imaginary part Prescriptions unnecessary

This simplifies a lot the two-loop representation of LTD

$$\left[G_D(\alpha_2) G_D(\alpha_1 \cup \alpha_3) + G_D(-\alpha_2 \cup \alpha_1) G_D(\alpha_3) - G_F(\alpha_1) G_D(\alpha_2) G_D(\alpha_3)\right]$$

$$G_D(\alpha_1) G_D(\alpha_2) G_F(\alpha_3) + G_F(\alpha_1) G_D(-\alpha_2) G_D(\alpha_3) + G_D(\alpha_1) G_F(\alpha_2) G_D(\alpha_3)$$

14 double cuts

SIMPLIFYING THE MASTER FORMULA

If the Higgs boson is on shell, we are below threshold, i.e. $4M_f^2 > M_H^2$

No imaginary part Prescriptions unnecessary

This simplifies a lot the two-loop representation of LTD

4 double cuts

4 double cuts

UNIVERSALITY OF THE DUAL AMPLITUDES

> The 22 dual double cuts can be written with 9 generators, for instance

$$\begin{split} \mathcal{A}_{1}^{(2,f)}(q_{i},q_{4}) &= g_{f}^{(2)} \int_{\ell_{1}} \int_{\ell_{2}} \tilde{\delta}(q_{i},q_{4}) \left\{ -\frac{r_{f} c_{1}^{(f)}}{D_{3} D_{12}} \left(G(D_{\overline{i}},\kappa_{i},c_{4,u}^{(f)}) \left(1 + H(D_{3} D_{12},\kappa_{i}) \right) + F(D_{\overline{i}},\kappa_{4}/\kappa_{i}) \right) \\ &+ \left(c_{7}^{(f)} \left(\frac{1}{D_{\overline{i}}} - \frac{1}{D_{\overline{3}}} \left(1 - \frac{D_{3}}{D_{12}} \left(1 - \frac{D_{\overline{12}}}{D_{\overline{i}}} \right) \right) \right) + \frac{1}{D_{3}} \left(c_{8}^{(f)} \left(\frac{1}{D_{\overline{3}}} - \frac{1}{D_{\overline{i}}} \right) - \frac{1}{D_{\overline{12}}} \left(c_{9}^{(f)} - c_{10}^{(f)} \frac{D_{\overline{3}}}{D_{\overline{i}}} \right) \right) \\ &+ 2 r_{f} \left[\frac{1}{D_{3} D_{12}} \left(c_{1}^{(f)} \left(\frac{1}{D_{3} D_{\overline{3}}} + \frac{1}{D_{\overline{i}}} \left(\frac{1}{D_{\overline{3}}} - \frac{1}{D_{3}} \right) \right) + \frac{c_{14}^{(f)}}{D_{\overline{3}}} + \frac{c_{20}^{(f)}}{D_{\overline{i}}} - c_{16}^{(f)} \\ &+ c_{17}^{(f)} \left(\frac{D_{\overline{i}} - D_{\overline{12}}}{D_{\overline{3}}} + \frac{D_{\overline{3}}}{D_{\overline{i}}} \right) \right) - \frac{1}{D_{\overline{i}} D_{\overline{3}}} \left(\frac{c_{7}^{(f)}}{D_{12}} + c_{18}^{(f)} \right) \right] + \left\{ 3 \leftrightarrow 12 \right\} \right) \bigg\} \end{split}$$

The $c_i^{(f)}$ are scalar coefficients and depend only on the reduced mass $r_f = \frac{s_{12}}{M_f^2}$ and the dimension d, while the D_i are normalized dual propagators

UNIVERSALITY OF THE DUAL AMPLITUDES

$$\begin{split} c_{4,u}^{(t)} &= -\frac{d-2}{4} \,, \qquad c_{4,nu}^{(t)} = -\frac{d-2}{4} \,, \qquad c_{7}^{(t)} = -\frac{1}{4} (c_{1}^{(t)} - r_{t}) \,, \\ c_{8}^{(t)} &= c_{1}^{(t)} + \frac{(d-6)d+10}{2(d-2)} r_{t} \,, \qquad c_{9}^{(t)} = c_{1}^{(t)} - \frac{(d-8)d+10}{2(d-2)} r_{t} \,, \qquad c_{10}^{(t)} = c_{1}^{(t)} - \frac{(d-8)d+14}{2(d-2)} r_{t} \,, \\ c_{11}^{(t)} &= c_{1}^{(t)} + \frac{(d-8)d+18}{2(d-2)} r_{t} \,, \qquad c_{12}^{(t)} = -\frac{(d-4)(d-5)}{d-2} r_{t} \,, \qquad c_{13}^{(t)} = -\frac{(d-6)d+12}{2(d-2)} r_{t} \,, \\ c_{14}^{(t)} &= \frac{3}{4} \left(c_{1}^{(f)} - \frac{d}{3(d-2)} r_{t} \right) \,, \qquad c_{15}^{(t)} = -\frac{1}{2} \left(c_{1}^{(f)} + \frac{r_{t}}{2} \right) \,, \qquad c_{16}^{(t)} = \frac{d-4}{4} \,, \\ c_{17}^{(t)} &= \frac{d-4}{4} \,, \qquad c_{18}^{(t)} = -\frac{(d-4)^{2}}{4(d-2)} \,, \qquad c_{19}^{(t)} = \frac{1}{2} \left(c_{1}^{(t)} + \frac{1}{d-2} r_{t} \right) \,, \\ c_{20}^{(t)} &= \frac{1}{4} (c_{1}^{(t)} + r_{t}) \,, \qquad c_{21}^{(t)} &= -\frac{2(d-4)}{d-2} + \frac{(d-10)d+18}{4(d-2)} r_{t} \,, \qquad c_{10}^{(t)} = -2 + \frac{(d-4)d}{4(d-2)} r_{t} \,, \\ c_{4,u}^{(\phi)} &= -\frac{d-2}{4} \,, \qquad c_{4,nu}^{(\phi)} = \frac{1}{4} \,, \qquad c_{10}^{(\phi)} = -\frac{1}{4} c_{1}^{(\phi)} \,, \\ c_{10}^{(\phi)} &= c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = c_{1}^{(\phi)} \,, \\ c_{10}^{(\phi)} &= c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = -\frac{3}{2(d-4)} r_{\phi} \,, \qquad c_{10}^{(\phi)} = \frac{1}{2} \,, \\ c_{10}^{(\phi)} &= \frac{1}{4} c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = -\frac{1}{2} c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = \frac{1}{2} \,, \\ c_{10}^{(\phi)} &= \frac{1}{4} c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = -\frac{1}{2} c_{1}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = \frac{1}{2} \,, \\ c_{11}^{(\phi)} &= -\frac{3}{2(d-4)} r_{\phi} \,, \qquad c_{10}^{(\phi)} = \frac{1}{2} \,, \\ c_{10}^{(\phi)} &= \frac{1}{2} \,, \\ c_{11}^{(\phi)} &= -\frac{3}{2(d-4)} \,, \qquad c_{10}^{(\phi)} &= \frac{1}{2} \,, \\ c_{11}^{(\phi)} &= -\frac{3}{d-2} \,, \qquad c_{10}^{(\phi)} \,, \qquad c_{10}^{(\phi)} = \frac{1}{2} \,, \\ c_{10}^{(\phi)} &= \frac{1}{2} \,, \\ c_{10}^{(\phi)} \,, \qquad c_{10}^{(\phi)} &= \frac{1}{2} \,, \\ c_{10}^{(\phi)} &= \frac{1}{2} \,, \\ c_{11}^{(\phi)} \,, \qquad c_{11}^{(\phi)} \,, \qquad c_{11}^{(\phi)} \,, \qquad c_{11}^{(\phi)} \,, \\ c_{11}^{(\phi)} &= -\frac{3}{d-2} \,, \qquad c_{11}^{(\phi)} \,, \qquad c_{11}^{(\phi)} \,, \\ c_$$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

SINGLE UV COUNTER-TERMS

- > There are three things to renormalize:
 - The Higgs boson vertex
 - The photon vertices
 - The self-energies

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

SINGLE UV COUNTER-TERMS

- > There are three things to renormalize:
 - The Higgs boson vertex
 - The photon vertices
 - The self-energies
- The single UV counter-terms are built by taking ℓ_1 or $\ell_{12} = \ell_1 + \ell_2$ to infinity in the relevant diagrams
- For instance, for the Higgs boson vertex correction

HIGGS BOSON VERTEX RENORMALISATION

- There are two contributing diagrams for the top, three for the scalar and the counter-term is computed by taking $\ell_1 \to \infty$ at integrand level
- > The Higgs vertex corrections read, for both particles,

$$\begin{split} \mathbf{\Gamma}_{H,\mathrm{UV}}^{(1,f)} = & (e \, e_f)^2 \, \int_{\ell_1} \, \left(G_F(q_{1,\mathrm{UV}}) \right)^2 \left(c_{H,\mathrm{UV}}^{(f)} - G_F(q_{1,\mathrm{UV}}) \, d_{H,\mathrm{UV}}^{(f)} \, \mu_{\mathrm{UV}}^2 \right) \, \mathbf{\Gamma}_H^{(0,f)} \\ = & (e \, e_f)^2 \frac{\tilde{S}_\epsilon}{16\pi^2} \left(\frac{\mu_{\mathrm{UV}}^2}{\mu^2} \right)^{-\epsilon} \frac{C_{H,\mathrm{UV}}^{(f)}}{\epsilon} \, \mathbf{\Gamma}_H^{(0,f)} \, , \end{split}$$

HIGGS BOSON VERTEX RENORMALISATION

- There are two contributing diagrams for the top, three for the scalar and the counter-term is computed by taking $\ell_1 \to \infty$ at integrand level
- > The Higgs vertex corrections read, for both particles,

Depends on what we renormalise (here the Higgs vertex) Depends on the renormalisation scheme

$$\begin{split} \mathbf{\Gamma}_{H,\mathrm{UV}}^{(1,f)} = & (e \, e_f)^2 \, \int_{\ell_1} \, \left(G_F(q_{1,\mathrm{UV}}) \right)^2 \left(c_{H,\mathrm{UV}}^{(f)} - G_F(q_{1,\mathrm{UV}}) d_{H,\mathrm{UV}}^{(f)} \, \mu_{\mathrm{UV}}^2 \right) \, \mathbf{\Gamma}_H^{(0,f)} \\ = & (e \, e_f)^2 \frac{\tilde{S}_\epsilon}{16\pi^2} \left(\frac{\mu_{\mathrm{UV}}^2}{\mu^2} \right)^{-\epsilon} \underbrace{C_{H,\mathrm{UV}}^{(f)}}_{\epsilon} \, \mathbf{\Gamma}_H^{(0,f)} \, , \end{split}$$

Is a combination of $c_{H,\mathrm{UV}}^{(f)}$ and $d_{H,\mathrm{UV}}^{(f)}$ and is obtained by integrating in d dimensions

PHOTON VERTEX RENORMALISATION

- > The idea is exactly the same (there are more diagrams though), with this time the limit that needs to be considered being $\ell_{12} \to \infty$
- The corresponding counter-term for the top reads

$$\begin{split} \mathbf{\Gamma}_{\gamma,\mathrm{UV}}^{(1,t)} &= (e \, e_t)^2 \, \int_{\ell_2} \, \left(G_F(q_{12,\mathrm{UV}}) \right)^2 \left(\left(c_{\gamma,\mathrm{UV}}^{(t)} - G_F(q_{12,\mathrm{UV}}) \, d_{\gamma,\mathrm{UV}}^{(t)} \, \mu_{\mathrm{UV}}^2 \right) \mathbf{\Gamma}_{\gamma}^{(0,t)} + c_{\gamma,\mathrm{UV}}^{(t)} \, \mathbf{\Delta}_{\gamma,\mathrm{UV}}^{(1,t)} \right) \\ &= (e \, e_t)^2 \frac{\tilde{S}_\epsilon}{16\pi^2} \left(\frac{\mu_{\mathrm{UV}}^2}{\mu^2} \right)^{-\epsilon} \frac{C_{\gamma,\mathrm{UV}}^{(t)}}{\epsilon} \, \mathbf{\Gamma}_{\gamma}^{(0,t)} \end{split}$$

PHOTON VERTEX RENORMALISATION

- > The idea is exactly the same (there are more diagrams though), with this time the limit that needs to be considered being $\ell_{12} \to \infty$
- The corresponding counter-term for the top reads

$$\begin{split} \mathbf{\Gamma}_{\gamma,\mathrm{UV}}^{(1,t)} &= (e \, e_t)^2 \, \int_{\ell_2} \, \left(G_F(q_{12,\mathrm{UV}}) \right)^2 \left(\left(c_{\gamma,\mathrm{UV}}^{(t)} - G_F(q_{12,\mathrm{UV}}) \, d_{\gamma,\mathrm{UV}}^{(t)} \, \mu_{\mathrm{UV}}^2 \right) \mathbf{\Gamma}_{\gamma}^{(0,t)} + c_{\gamma,\mathrm{UV}}^{(t)} \mathbf{\Delta}_{\gamma,\mathrm{UV}}^{(1,t)} \right) \\ &= (e \, e_t)^2 \frac{\tilde{S}_\epsilon}{16\pi^2} \left(\frac{\mu_{\mathrm{UV}}^2}{\mu^2} \right)^{-\epsilon} \frac{C_{\gamma,\mathrm{UV}}^{(t)}}{\epsilon} \, \mathbf{\Gamma}_{\gamma}^{(0,t)} \end{split}$$

The additional term $\Delta_{\gamma,\mathrm{UV}}^{(1,t)}$ integrates to 0 in d dimensions but is needed for **local** renormalisation

DOUBLE UV RENORMALISATION

• Accorded to the replacement S_{12} , the double UV counter-term must have the form

$$\mathcal{A}_{\mathrm{UV}^2}^{(2,f)} = g_f \, s_{12} (e \, e_f)^2 \, \int_{\ell_1} \int_{\ell_2} \left[(G_F(q_{1,\mathrm{UV}}))^{n_1} \, (G_F(q_{2,\mathrm{UV}}))^{n_2} \, (G_F(q_{12,\mathrm{UV}}))^{n_{12}} \, \mathcal{N}^{(f)} - 4 \, (G_F(q_{1,\mathrm{UV}}))^3 \, (G_F(q_{12,\mathrm{UV}}))^3 \, d_{\mathrm{UV}^2}^{(f)} \, \mu_{\mathrm{UV}}^4 \right],$$

DOUBLE UV RENORMALISATION

Sunrise diagram with

vanishing external momenta

• Accorded to the replacement S_{12} , the double UV counter-term must have the form

$$\mathcal{A}_{\mathrm{UV}^2}^{(2,f)} = g_f \, s_{12} (e \, e_f)^2 \, \int_{\ell_1} \int_{\ell_2} \left[(G_F(q_{1,\mathrm{UV}}))^{n_1} \, (G_F(q_{2,\mathrm{UV}}))^{n_2} \, (G_F(q_{12,\mathrm{UV}}))^{n_{12}} \, \mathcal{N}^{(f)} - 4 \, (G_F(q_{1,\mathrm{UV}}))^3 \, (G_F(q_{12,\mathrm{UV}}))^3 \, d_{\mathrm{UV}^2}^{(f)} \, \mu_{\mathrm{UV}}^4 \right],$$

• By using IBP, we can show that $\mathcal{A}_{\mathrm{UV}^2}^{(2,f)} = c_{\ominus}^{(f)} I_{\ominus} + c_{\odot}^{(f)} I_{\odot}^2$

Massive tadpole

By replacing the integrals by their values in d dimensions, we can choose d^(f)_{UV²} to fix the renormalisation scheme

DOUBLE UV RENORMALISATION

> The total double UV counter-terms for the top and the scalar read

$$\mathcal{A}_{\rm UV^2}^{(2,t)} = g_f \, s_{12} \, (e \, e_t)^2 \left(\frac{\tilde{S}_{\epsilon}}{16\pi^2} \right)^2 \left(\frac{\mu_{\rm UV}^2}{\mu^2} \right)^{-2\epsilon} \left(40 + \frac{16K_{\ominus}}{3} + 4(d_{H,\rm UV}^{(t)} - d_{\gamma,\rm UV}^{(t)}) - d_{\rm UV^2}^{(t)} + \mathcal{O}(\epsilon) \right) \mathcal{A}_{\rm UV^2}^{(2,\phi)} = g_f \, s_{12} \, (e \, e_\phi)^2 \left(\frac{\tilde{S}_{\epsilon}}{16\pi^2} \right)^2 \left(\frac{\mu_{\rm UV}^2}{\mu^2} \right)^{-2\epsilon} \left(-18 - \frac{8K_{\ominus}}{3} - d_{\rm UV^2}^{(\phi)} + \mathcal{O}(\epsilon) \right) \,,$$

DOUBLE UV RENORMALISATION

> The total double UV counter-terms for the top and the scalar read

$$\mathcal{A}_{\rm UV^2}^{(2,t)} = g_f \, s_{12} \, (e \, e_t)^2 \left(\frac{\tilde{S}_{\epsilon}}{16\pi^2} \right)^2 \left(\frac{\mu_{\rm UV}^2}{\mu^2} \right)^{-2\epsilon} \left(40 + \frac{16K_{\ominus}}{3} + 4(d_{H,\rm UV}^{(t)} - d_{\gamma,\rm UV}^{(t)}) - d_{\rm UV^2}^{(t)} + \mathcal{O}(\epsilon) \right) \mathcal{A}_{\rm UV^2}^{(2,\phi)} = g_f \, s_{12} \, (e \, e_\phi)^2 \left(\frac{\tilde{S}_{\epsilon}}{16\pi^2} \right)^2 \left(\frac{\mu_{\rm UV}^2}{\mu^2} \right)^{-2\epsilon} \left(-18 - \frac{8K_{\ominus}}{3} - d_{\rm UV^2}^{(\phi)} + \mathcal{O}(\epsilon) \right) \,,$$

Even though they do not actually renormalise anything, their presence is still necessary to remove local double UV divergences

This is very similar to the one-loop case: it is finite, but still requires the presence of a local counter-term to obtain the correct result

NUMERICAL INTEGRATION

• We use the following parametrizations for the amplitude

$$\ell_{1} = \frac{\sqrt{s_{12}}}{2} \xi_{1} \left(\sin(\theta_{1}), 0, \cos(\theta_{1}) \right)$$

$$\ell_{12} = \ell_{1} + \ell_{2} = \frac{\sqrt{s_{12}}}{2} \xi_{12} \left(\sin(\theta_{12}) \cos(\varphi_{12}), \sin(\theta_{12}) \sin(\varphi_{12}), \cos(\theta_{12}) \right)$$

$$\mathbf{p}_{1} = \frac{\sqrt{s_{12}}}{2} (0, 0, 1)$$

$$\mathbf{p}_{2} = \frac{\sqrt{s_{12}}}{2} (0, 0, -1)$$

And we compactify the integration domain by using the change of variables

$$\xi_i \to \frac{x_i}{1 - x_i}$$
 for $x_i \in [0, 1]$

IV. HIGGS BOSON DECAY TO TWO PHOTONS AT TWO LOOPS

FDM, Sborlini, Torres, Rodrigo JHEP 02 (2019) 143

NUMERICAL INTEGRATION

Results in the $\overline{\mathrm{MS}}$ scheme, with two different values of the renormalisation scale

Integration time (with Mathematica on a desktop computer) is $\mathcal{O}(1')$ for each point

SUMMARY & OUTLOOK

What we have achieved...

- The Loop-Tree Duality theorem has been extended to two loops and applied to the $H \rightarrow \gamma \gamma$ process at NLO, in a (almost) fully automatized way
- All UV divergences have been dealt with by computing local counter-terms, allowing a straightforward numerical integration in four dimensions

SUMMARY & OUTLOOK

What we have achieved...

- The Loop-Tree Duality theorem has been extended to two loops and applied to the $H \rightarrow \gamma \gamma$ process at NLO, in a (almost) fully automatized way
- All UV divergences have been dealt with by computing local counter-terms, allowing a straightforward numerical integration in four dimensions

What remains to be done...

- Fully functioning automated code at two-loop, from input to plot
- Dealing with potential physical threshold singularities (contour deformation) and compute the respective imaginary part
- > Dealing with potential **infrared singularities** (i.e. extending FDU at two loops)

Thank you!

Backup slides

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

DEALING WITH THE SINGULARITIES

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one collinear singularity in a given region of the phase-space)

Sborlini, FDM, Hernandez, Rodrigo, JHEP 08 (2016) 160

THE MOMENTUM MAPPING

Defining the mappings requires two steps:

- 1. Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one collinear singularity in a given region of the phase-space)
- 2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual contributions

In Region *i*:
$$(q_i || p_i)$$

$$p'_{r} = q_{i}, \quad p'_{i} = p_{i} - q_{i} + \alpha_{i} p_{j}$$

 $p'_{j} = (1 - \alpha_{i}) p_{j}, \qquad p'_{k} = p_{k}$

Becker, Reuschle, Weinzierl, JHEP 1012:013,2010

BUILD LOCAL UV COUNTER-TERMS

Expand the **uncut and unintegrated** amplitude around the UV propagator

$$G_F(q_i) = \frac{1}{q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0} + \dots \quad q_{\rm UV} = \ell + k_{\rm UV}$$

- By choosing $k_{\rm UV} = 0$, this is equivalent to applying the following replacement... $\begin{cases} \ell^2 \to \lambda^2 q_{\rm UV}^2 + (1 - \lambda^2) \mu_{\rm UV}^2 \\ \ell \cdot p_i \to \lambda \, q_{\rm UV} \cdot p_i \end{cases}$
-) ... and then expanding around λ and taking only the divergent terms
- For the scalar two-point function

$$I = \int_{\ell} \frac{1}{(\ell^2 - M^2 + i0)((\ell + p)^2 - M^2 + i0)} \quad \Longrightarrow \quad I_{\rm UV}^{\rm cnt} = \int_{\ell} \frac{1}{(q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0)^2}$$

> Apply LTD on this local counter-term, and subtract it from the amplitude

COMPUTATION SAMPLES

KINOSHITA-LEE-NAUENBERG THEOREM

The Standard Model is infrared finite

- In the traditional approach, the singularities have different signs after integration
- Within FDU, cancellations are performed **locally**

Defining the mappings requires two steps:

 Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

Defining the mappings requires two steps:

 Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

 $(y'_{i,r} = (2p'_i \cdot p'_r)/s_{12})$

Defining the mappings requires two steps:

 Separating the singularities of a same type by splitting the real phase-space into several regions (there cannot be more than one given type of IR singularity in a given region of the phasespace), for instance

Defining the mappings requires two steps:

2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

$$\begin{array}{l} {\it REGION 1:} & p_r^{\prime \mu} = q_1^{\mu} \;, \qquad p_1^{\prime \mu} = p_1^{\mu} - q_1^{\mu} + \alpha_1 \, p_2^{\mu} \;, \\ p_2^{\prime \mu} = (1 - \alpha_1) \, p_2^{\mu} \;, \qquad \alpha_1 = \frac{q_3^2}{2q_3 \cdot p_2} \;, \\ \\ {\it REGION 2:} & p_1^{\prime \mu} = q_2^{\mu} \;, \qquad p_r^{\prime \mu} = p_2^{\mu} - q_2^{\mu} + \alpha_2 \, p_1^{\mu} \;, \\ p_1^{\prime \mu} = (1 - \alpha_2) \, p_1^{\mu} \;, \qquad \alpha_2 = \frac{q_1^2}{2q_1 \cdot p_1} \;, \end{array}$$

Defining the mappings requires two steps:

2. Implementing an optimized mapping in each region, to allow a fully local cancellation of IR singularities with those present in the dual contributions

Motivated by QCD factorization properties, we can use

 $2q_1 \cdot p_1$

 $1 - v_2 \xi_{2,0}$

which we solve using on-shell conditions and momentum conservation.

THE MOMENTUM MAPPING (THE MASSIVE CASE)

Rewrite the **emitter** and the **spectator** in terms of two massless momenta

$$p_i^{\mu} = \beta_+ \hat{p}_i^{\mu} + \beta_- \hat{p}_j^{\mu}$$

$$p_j^{\mu} = (1 - \beta_+) \hat{p}_i^{\mu} + (1 - \beta_-) \hat{p}_j^{\mu} \qquad \hat{p}_i^{\mu} + \hat{p}_j^{\mu} = p_i^{\mu} + p_j^{\mu}$$

Mapping and phase-space partition formally equal to the massless case: determine mapping parameters from on-shell conditions

$$p_{r}^{\prime \mu} = q_{i}^{\mu} ,$$

$$p_{i}^{\prime \mu} = (1 - \alpha_{i}) \hat{p}_{i}^{\mu} + (1 - \gamma_{i}) \hat{p}_{j}^{\mu} - q_{i}^{\mu} ,$$

$$p_{j}^{\prime \mu} = \alpha_{i} \hat{p}_{i}^{\mu} + \gamma_{i} \hat{p}_{j}^{\mu} , \qquad p_{k}^{\prime \mu} = p_{k}^{\mu} , \quad k \neq i, j$$

> Quasi-collinear configurations are conveniently mapped such that the massless limit is smooth

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS

$$I_{1} = \frac{4}{s_{12}} \int \frac{\xi_{1,0}^{-1} d[\xi_{1,0}] d[v_{1}]}{1 - (1 - 2v_{1})^{2} \beta^{2}} \left(\theta(\mathcal{R}_{1}) + (1 - \theta(\mathcal{R}_{1}))\right) \qquad I_{3}$$
$$I_{2} = \frac{2}{s_{12}} \int \frac{\xi_{2,0}^{-1} \xi_{2}^{2} d[\xi_{2,0}] d[v_{2}]}{(1 - \xi_{2,0} + i0)(\xi_{2,0} + \beta\xi_{2}(1 - 2v_{2}) - m^{2})} \left(\theta(\mathcal{R}_{2}) + (1 - \theta(\mathcal{R}_{2}))\right)$$

Both regions after applying the change of variables

ADDING THE REAL AND THE VIRTUAL CONTRIBUTIONS

Both regions after applying the change of variables

BUILDING A LOCAL COUNTER-TERM

Expand the dual propagators around a UV propagator...

$$G_F(q_i) = \frac{1}{q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0} + \dots \qquad q_{\rm UV} = \ell + k_{\rm UV}$$

 ... and adjust the subleading term depending on your renormalization scheme (for MS, subtract only the pole). For instance for the scalar two-point function:

$$I = \int_{\ell} \frac{1}{(\ell^2 - M^2 + i0)((\ell + p)^2 - M^2 + i0)} \quad \Longrightarrow \quad I_{\rm UV}^{\rm cnt} = \int_{\ell} \frac{1}{(q_{\rm UV}^2 - \mu_{\rm UV}^2 + i0)^2}$$

> The last step is to subtract the counter-term to the remaining term we had earlier

$$\sigma_V^{(1,\mathrm{R})} = \overline{\sigma}_V^{(1)} - \sigma_V^{(1,\mathrm{UV})}$$

SELF-ENERGY CORRECTIONS

Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR

$$- \int = 0 = K \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \right)$$

SELF-ENERGY CORRECTIONS

Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behavior, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR

COMPUTATION SAMPLES

COMPARISON WITH DREG

DREG	LTD / FDU
Modify the dimensions of the space-time to $d=4-2\epsilon$	Computations without altering the $d = 4$ space-time dimensions
Singularities manifest after integration as $rac{1}{\epsilon}$ poles:	Singularities killed before integration:
 IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space 	 Unsubtracted summation over degenerate IR states at integrand level through a suitable momentum mapping
UV renormalized	UV through local counter-terms
Virtual and real contributions are considered separately: phase-space with different number of final-state particles	Virtual and real contributions are considered simultaneously: more efficient Monte Carlo implementation

THE FOUR-DIMENSIONAL UNSUBTRACTION...

- In is a new algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics
- ... allows for fully local cancellations of IR and UV singularities in four dimensions
- ... is optimized for smooth massless limits due to proper treatment of quasicollinear configurations
- In allows the simultaneous generation of real and virtual corrections, which is advantageous, particularly for multi-leg processes