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Outline

+ Next-to-leading power threshold logarithms
»  Regions, factorization at NNLO

+ NLP logs at NLO, simple formula
»  extension to prompt photon

+ LL resummation at NLP
» using NLP webs



Threshold logarithms

Log of “energy excess above
production threshold”
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NLP threshold behavior

+ For Drell-Yan, DIS, Higgs, singular behavior in perturbation theory when z— 1

_lni(l — z)_

e
£ ali=

»  plus distributions have been organized to all orders (=“resummation”), Ib possible for In(1-z)?

6(1 — 2)

+ “Zurich” method of threshold expansion allows computation (for NNNLO Higgs production)

( 1 = ) s lnq ( 1 e Z) Anasthasiou, Duhr, Dulat, Furlan,

Gehrmann, Herzog, Mistlberger

- done to p=37..

Larkoski, Neill, Stewart, Moult, Kolodrubetz, Rothen,
Zhu, Tackmann, Vita, Feige ;

£ MUCh development In SCET Beneke, Campanario, Mannel, Peckja
+ Useful also for improving NNLO slicing (N-jettiness) methods

+ Alternative terminology to "NLP”
»  Next-to-soft

»  Next-to-eikonal
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Next-to-eikonal Feynman rules

+ Keep 1 term more in k expansion beyond eikonal approximation

1 2p:UJ _|_ k':UJ k2 2p:UJ
SCalar o

2p - k + k2 2p - k (2p - k)?

: p +¥ fyt i 20
fermion o 27 D k o k)2}u(p)

»  Becomes emitter-spin dependgnt, reg€oil now included

» Is there predictive power for Ext-to-eikonal terms?

Eikonal term



Classic NLP result: L.ow’s theorem

“Internal” emission contributes

HofloRed

particles by DeI Duca): LBKD theorem

+ Elastic amplitude still determines the emission to NLP accuracy,

>

>

v Work to order k, and use Ward identity

pg(k " P1

—k°p2)

These rules are good for emissions from external lines. At NLP order, also 1

Low’s theorem (scalars, generalization to spinors by Burnett-Kroll, to massless

or

C lp s P k) pi(k-p2—Fk-p1)
T = .« i

=2p kK 2pg - k p1-k

note the derivative

detailed knowledge of “internal part” not needed
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NLP logarithms for Drell-Yan

+ Goal: combine (N)LP matrix elements with (N)LP phase space to predict Ini(1-z) for
NNLO Drell-Yan

I
o) dz

N/dq)LP|M|%P+/dq)LP|M|12\ILP+/d(I)NLP|M|%P+"'

»  We pursue two methods:
v 1. Method of regions

v 2. Factorization
»  NLO is “easy’, real test at NNLO



NLP logs in Drell-Yan at NNLO

+ Check NLP Feynman rules for NNLO Drell-Yan double real emission

» Result at NLP level, agrees with equivalent exact result. Cr2 terms e.g.

2 Qg 2 s 128 128
K@@ = (§0r) [-Z 20 + 2 P1) - 7 log1 - )
256 D56e 320 Z.
_TD2(2)+TIOg (1—2)—71@%(1—2) s llog (1—2)]
; =7
iE % Ds3(z) — 10324 log3(1 — z) + 6401og?(1 — 2)| , +

+ Next, 1 Real- 1 Virtual




Diagnosis: method of regions

+ How does it work?
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Beneke, Smirnov

Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by

appropiate scaling

Hard: ki ~V5(1,1,1); Softer ke /s D A2
Collinear : k; ~ V5 (1, A, )\2) . Anticollinear : k; ~ V'§ ()\2, e 1) :

expand integrand in A, to leading and next-to-leading order

but then integrate over all k1 anyway!

p
k

e

2

X

Treat emitted momentum as soft and incoming momenta as hard

e )
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Method of region result

4 RGSUltS Bonocore, EL, Magnea, Vernazza, White
»  Hard region (expansion in A2): LP + some NLP
»  Soft region (expansion in A2). ZERO

»  (anti-)collinear regions (expansion in A):  NLP only
+ Result:
»  the full K("4.1yis reproduced, including constants

+ For predictive power, need factorization

Hl



A factorization approach from Low’s theorem

Bonocore, EL, Magnea, Melville, Vernazza, White

+ Can we predict the In(1-z) logarithms from lower orders?
»  Factorize the cross section, @‘

v H: the hard and the soft function

v J: Incoming-jet functions

+ Next, add one extra soft emission. Let every blob radiate! @
cﬂ;ﬁ“

i O

< <

. - Del Duca

»  Compute each new “blob + radiation”, and put it together. New: radiative jet function

T ok ooy culn) /ddy e"P=FY (0| B, (y, 00) Y(y) 5.(0) | p)
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Factorization approach to NLP logarithms

+ Upshot: a factorization formula for the emission amplitude

2
1~ =~ .
A,u,a(pja k) = Z (5 S,u,a(pja k) B gTi,a G@'“u 8_py i J,u,a (pia e k)) A(pj) 7 .A;Za(pj, k)
=k 7
Soft function Orbital term Jet function Overlap

» JuIs needed at one-loop level
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Predicted NLP threshold logs vs exact result

+ Compute blobs, one-loop radiative jet function, contract with cc amplitude and
integrate over phase space. Exact calculation gives

g\ 2 32Dg(z) — 32 —64D1(z) +48Dy(z) + 64L(z) — 96
k9@ - (2) {C% [ G G o sl
64D (2) — 96D1(z) + 128Dy (z) — 64L%*(2) + 208L(2) — 196 128
3 € s Ds(2)

128
+ 96D4(2) — 256D (2) + 256D (2) + TL3(,z) ORI AN 408]

o e e R O e M O
€ € 2
2 2
= ?173(2) i ?L‘g(z) — 128L%(2) — 60L(z) + 8] } , (4.6)

B =il

+ Result: perfect agreement for 4 powers of the next-to-eikonal/soft logarithms at
NNLO

= Tl =y )
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Colour-singlet final states

+ (Generalize NLP factorization (the LBKD theorem) beyond Drell-Yan, to arbitrary
colour-singlet final states

» look at NLO only, i.e. predict

e [mil—_zZ)L Do = L i ZL Ii—nll—) . L= Ino=)

v where “1-z" can take different forms for 2 -> 2,3 etc scattering
» apply to Drell-Yan, (multi-)Higgs, (vector boson pairs)

»  for inclusive and fully differential cross sections
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NLP terms in colorless final states (@N1.O

Bonocore, Del Duca, EL, Magnea, Vernazza, White
1706.04018

+ Previous factorization at NLO

2

A,Eal,ZL ({pz}ak) = Z

=

0
opy/

95 T1,a Gl 7 + Ik (01,70, k) } A9 ({p:})

v Qs a projector, T a color matrix

2p — k i1 1
= S| Seu = gl

» Initial quarks: TG0 ) — g ic [

2p - k p-k
o initi : / . [(2p— k) kP _-( 2 )
|n|t|a| g|UOnS Ju,pa(pﬂza k) — T [ = - i oo n M,B,u,po' MBM;PU — W\ NBp"Muc NBoNup

»  notice the spin-dependent Lorentz generator (“next-to-soft theorem®)

» notice derivative term (Low’s theorem)
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Lorentz generator

+ The derivative term can be written as the orbital part of Lorentz generator

- 0 [ 0 a]__ikVL,SQL
L pi -k
+ s0 that
2
7 Go= ke 06 o o O
A (pih ) = 2 00Te| Ty o (W4 B0) [ 4O (D
(1)
B

» leads to Scalar + Orbital + Spin part of the NLP amplitude
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Colour singlet production in gg channel

B
+ Square amplitude b
A 2ol ALt Zican At 73 D 15)P La =

[ AnLp|® = Z i s urpe (P15 1) Poyun (D2, 12) Poy oy (K, I3)
colours
e ) (3.7)
“ Palp + ppla
v where Pas (D, 1) Z N (p)esV* () = —nag + e

»  Can be done using -Neg onIy (external ghosts are beyond NLP)

» Truncate to NLP, leads to

Aniel = 3 {J A%+ 2Re [(AZS + A% Ascat o]

colours

»  Easy part: scalar (eikonal) part

o, WU P1-P
Z "Ascgl 7 298 (ch = 1) D1 -116]?22' k ’AMV|2

colours
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(S production in gg channel

+ Spin * scalar vanishes (anti-symmetriy in pv)

+ Orbital part leads to shifts in momentum dependence

> 2Re [ATL Accal o,

colours

v/ Where

2

o 1 -k o) -k o o Q L ik o) p2 -k
opl = = (p2 p1 2 p2+k)75p2:__(1 p -

P1 - P2

292N, (NZ — 1) p1 - p2

_p1'p2

p1-kp2-k opf

2\p1-p2 2 p1L-po

+ Result is simple: dipole times shifted squared LO amplitude

0 0
[5]9(11 = bony 59]?‘)‘] |~A/w,2
2

pT + ko‘)

Anwp|? =

20 N (e~ 1ip p

p1-kpa-k

A (p1 + 6p1, 2 + 0p2)|°
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. Ps3

CS production in qq channel p1 E

P2

+ Scalar plus orbital part very similar to gg case

g?C’F S
2 p1-kpa-k

|AKILP|§ca1.—|—orb. 5 |A(p1 e 5]?1,]92 e 5p2)|2

» except for the 1/z , which is due to the kinematic shift
s = (p1+p2+06p1+0p2)° = s+2(dp1 + Ip2) - (p1 + p2)

» which Is the same as
=

+ But the spin part now does not cancel:

2p1-p2 k- (p1+ p2) ;
2 Re {AT As in] e gNCC A 7
Colzol;rs = ? “prokpe-k p1opo AlpL p2)l

»  precisely compensates 1/z= 1 + (1-2)!! —(1 - 2)
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Squared amplitudes and cross sections

+ In summary
292N, (N2 —1) p1 - p2

f . ) p1-kps -k

A L (p1+ 0p1, p2 + 0p2)|°

S

e |A(p1 + Sp1,p2 + 0p2) |

) quarkS |ANLP|2 = gg Cr

+ Up to colour factors the same:
» eikonal (dipole) factor times shifted Born cross section
»  Born can be loop-induced, have complex parts etc.

+ (Combine carefully with phase space for general inclusive formula

dﬁ(gg) . 2e e g 477'#2 6 —1—2¢ F2(_6)
= di e ) e o Ty 0
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Single Higgs production

Infinite top mass limit not needed
extra operators = shift in kinematics

+ Single Higgs production

= = F(zT,¢€) : + 2D1(2) — Dp(z) —4log(l — 2) + 2

»  with F the well-known Born function. D’s and L's agree with exact calculation, but also
with full top mass dependence! Dawson; Spira, Djouadi,

Graudenz, Zerwas
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Di-Higgs production

‘> ------- ‘\ "

. o o o e e e =
~3

Borowka, Greiner, Heinrich, Jones,

: : Kerner, Schlenk, Zirke
+ Double Higgs production at NLO-NLP
daiis = ey 12 612 -
= 22 129D — -
e _ 2o, (F 20 1 1201 (2) - 2l0g(1 - 2)] ot ()
» where i o
orn S 2 2
e [’CAFA+CDFD| + |CaGol }

v with triangle and box graphs, again for full top mass dependence
»  Should be useful for numerical evaluations, and seeing new patterns
+  Similar result for triple-Higgs production

De Florian, Mazzitelli
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Final state partons:
Prompt photon production

Beenakker, van Beekveld, EL, White
to appear



With FS partons: prompt photon

+ Two LO channels: g and qg

+ With extra radiation, different ways to define threshold. We shall use “w"—1

i — (p —pV)2 = —SVW
= W m == 1
sS4 = s+t +u =sv(l —w)

+ Two issues to deal with
»  shifting kinematics in 2 — 2 kinematics

»  soft fermion emission

25



Gluon emission

+ For qq channel
+ (Can in fact write down general formula

ANLP o Ascal s Aspin S5 Aorb
n—+2

9 T; o o o . %
P Z 2;_ ']]{7 (Oscal,j = Ospin,j ar Oorb,j) X Z~/\/lH(pla IR Z P 7pn+2)€g(k)7
jit

»  color charge and spin generator depends on emitting IS or FS particle

» orbitral part on IS or FS particle

26



Squared amplitude at NLP

+ Result: again dipoles plus momentum shift

+ Important to implement 2 — 3 momentum conservation in 2 — 2 matrix element

»  used Catani-Seymour dipoles (FKS is also possible) Gervais
C 2p1
_ 2 il P1 - P2 : 9
ANLP, g7—94] & Cr (o1 k) (p2 - k) | Mg—svg (D1 + P12, P2 + 0D2.1)]

1 2p1 - PR 2
= - Op1. — Oppg.

1 2p2 - PR 2
= i Ips. — O0pR.
i ey [ Mgg—~g(p2 + 0p2;R, PR — ODR:2)|

1 2p1 - p2 2
— - Op1. Opa. :
o [Mg—rg(P1 + 0p1;2, P2 + dp2;1)|

Note sign change for final state emitter

+ Integrate over NLO phase, agrees with NLO calculation including In(1-w) terms

Gordon, Vogelsang
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Soft fermions

+ At NLP (not LP) one can have soft fermion emission

»  Effective feynman rule for left diagram (note that “u(k)” is of order vk )

. gSTcamC‘ %

ZMNLP,l,g == (p1 Z ]C)2 i|_ e Eﬂ(pl)u(k)vﬂlecj (p17p27 e 7pn—|-2)
»  Right diagram

M . b M

1/VINLP,1,9 = (p1 — k)2 +Z.5U( )Ypu(P1) M p(P1, P25 - - - s Prt2)-

+ Squaring amplitude and integration over phase space gives agreement with exact
NLO

»  Must keep careful track of singular regions
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LL resummation of NLP logarithms

Bahjat-Abbas, Bonocore, EL, Magnea, Sinninghe Damsté, Vernazza, White
to appear



LL resummation of NLP logarithms

+ We have organized NLP threshold logs at NLO and NNLO for
Drell-Yan. Can one resum them?

+ First resummation conjecture: just change kernel in regular

- Kraemer, EL, Spira; 1998
resummation formula FLbL
1+ 22 2

> —2
1l — 2z 1l — 2z

»  reproduced NNLO NLP logs of van Neerven et al

+ Physical kernel approach for inclusive quantities

Soar, Moch, Vemaseren, Vogt;

» using single log behaviour of kernel Moch, Vogt; Mattizelli, de Florian

+ Recent LL resummation using SCET

Beneke, Broggio, Garny, Jaskiewicz,
Szafron, LV, Wang, 2018

—8&C Qg
ANip (2, 1) = exp [4S™" (un, p) — 45" (s, )] % 7 L ((:)) il
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Kikonal exponentiation

+  After eikonal approximation, we suddenly see interesting patterns.

One loop vertex correction, in eikonal approximation
p

L Ao/d"kl L

Two loop vertex correction, in eikonal approximation

ko 1 L : 1 :
“@é W{ AOz(/“W@-k)@-k))
Exponential series

M<M<‘ %nLM@ M@+ =) [m<]

Yennie, Frautschi, Suura ‘61
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+ Not immediately generalizable to QCD, seemingly

>

>

Exp [ Cr g - (;mw)@ + (~504Cr) @+ ]

(QCD exponentiation: webs

Vertices terms have color charges, which don’t commute

Still, an exponentiation theorem holds

ZFDCD =cxD
D

Ze

Webs

52

Gatheral; Frenkel, Taylor; Stermar

EL, Stavenga, White



Kikonal approximation from QM path integrals

EL, Stavenga, White
Use textbook result

Sum of all diagrams = exp <Connected diagrams>

Write scattering amplitude as first-quantized path integral
M(p1,p2, 1k}) = /DAS 2ol Al el e

Eikonal vertices are sources for gauge bosons along line

i T

Disconnected Connected

Can be generalized to non-abelian case (using replica trick)

55



NLP amplitude exponentiation via path integral

EL, Magnea, Stavenga, White

+ Fluctuations around classical path are NE corrections
» Al NLP corrections from external lines exponentiate

»  Keep track via scaling variable A P — A

=2 e - é-2 ) - Az,
f(oo)—/x(o):OD:Ee p[z/o dt(zx +(n+1x)- A(x; + nt + x)

()
+5a Al F :U)) }

+ Exponentiation then in terms of NLP webs
Y C(D)F(D) = exp [C(D)Wg(D) + C'(D)Wng(D)]

Bonocore, EL, Magnea, Melville, Vernazza, White
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L.I. resummation for cross section at NL.P

+ Can show that phase space NLP effects behave as
e(1l—z)
» l.e. softness suppression comes with singularity suppression

+ (Can show that there are no LL enhancements from purely collinear regions (single
log)

+ LL effects come then only from NLP soft function

18



Exponentiating NLP soft function

+ Moments of cross section

/1 4 49Dy
0 dT

= 00(Q%) an (Q*)an (Q%) SxLp (N, Q% €),

[ NEP

+ with NLP soft function (f's are NLP Wilson lines)
z 1 2
S =5 S [l al)nl o)) o= - %),

S
n

+ Exponentiation then gives

1
/ dr N1 Yo
0

- = ool@ )arr P O G P, O

LL, NLP
4log(N)
= .

[asCF
X exp
s

(2 log?(N) +

» agrees with old conjecture
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Summary

+ NLP factorization (LBDK theorem) leads to strong prediction for NLP threshold logs
»  Drell-Yan at NNLO

+ Explicit formulae at NLO for any colour singlet final state, and now also coloured final
state

+ LL resummation at NLP for Drell-Yan done

» NLL seems much harder..
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