

Henrik Johansson

Uppsala U. & Nordita

Amplitudes in the LHC era

GGI Florence, Oct 31, 2018

Based on recent work: 1701.02519, 1708.06807, 1804.09311 w/ Zvi Bern, John Joseph Carrasco, Wei-Ming Chen, Alex Edison, Julio Parra-Martinez, Radu Roiban, Mao Zeng and older work: 0702112, 0905.2326, 1008.3327, 1201.5366 w/ Zvi Bern, John Joseph Carrasco, Lance Dixon, David Kosower, Radu Roiban

Outline

- Motivation & Review:
	- Status of *N*=8 SUGRA UV behavior
	- Previous 3,4 loop results
- Key steps in calculation \bullet
	- Generalized double copy for gravity ampl.
	- Controlling UV behavior of *N*=4 SYM \bullet
	- Improved UV integration, IBP & vacuum diag.
- **P** Results at 5 loops
	- The critical UV behavior at 5 loops
	- Simplicity in pattern of diagrams
- Conclusion

SUGRA status on one page

Known facts:

Susy forbids 1,2 loop div. R3R³

Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström, Green, Schwarz, Brink, Marcus, Sagnotti

- Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti
- With matter: 1-loop divergent 't Hooft & Veltman
- Naively susy allows 3-loop div. *R*⁴
- *N*=8 SG and *N*=4 SG 3-loop finite! Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Davies, Dennen, Huang
- *N*=8 SG: no divergence before 7 loops
- $D_c = 4 + \frac{6}{L}$ *D>4 d*ivergences @ *L*=2,3,4 Marcus, Sagnotti, Bern, Dixon, Dunbar, Perelstein, Rozowsky, Carrasco, HJ, Kosower, Roiban

- Only known D=4 SG divergence: Bern, Davies, Dennen, Smirnov² $\mathcal{N}=4$ @ 4 loops (\rightarrow more questions than answers)
- 7-loop *D*=4 calculation difficult instead work out 5 loops in $D=24/5$ \rightarrow this talk

Why is it interesting ?

- If *N*=8 SG is perturbatively finite, why is it interesting ?
- It might be finite for a good reason!
	- hidden new symmetry
	- Other mechanism or structure \rightarrow open a host of possibilities
- Any indication of hidden structures yet?
	- Gravity is a double copy of gauge theories
	- Color-Kinematics: kinematics = Lie algebra Bern, Carrasco, HJ
	- Constraints from E-M duality ? Kallosh et al., Nicolai, Roiban, Freedman
		- Hidden superconformal symmetry ? Ferrara, Kallosh, Van Proeyen; Loebbert, Mojaza, Plefka; HJ, Mogull, Teng; Caron-Huot, Trinh, …
	- Extended *N*=4 superspace ? Bossard, Howe, Stelle
	- Exceptional field theory **Bossard, Kleinschmidt**

UV problem = basic power counting

Naively expect gravity to behave worse than Yang-Mills

Gravity: non-renormalizable dimensionful coupling

$$
d^{4L}p \frac{\ldots (\kappa p^{\mu}p^{\nu})\ldots}{p_1^2 p_2^2 p_3^2 \ldots p_n^2}
$$

Yang-Mills: renormalizable dimensionless coupling

For finite gravity \rightarrow vast cancellations needed seems implausible, but exists for *N*=8 SG in all known ampl's. $\sim (p^{\mu})^{2L} \rightarrow (k^{\mu})^{2L}$

external momenta

Textbook perturbative gravity is complicated !

$$
\mathcal{L}=\frac{2}{\kappa^2}\sqrt{g}R,\quad \, g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}
$$

$$
\bigwedge_{\mu_1}^{\nu_1} \bigwedge_{\mu_2}^{\nu_2} = \frac{1}{2} \Big[\eta_{\mu_1 \nu_1} \eta_{\mu_2 \nu_2} + \eta_{\mu_1 \nu_2} \eta_{\nu_1 \mu_2} - \frac{2}{D-2} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2} \Big] \frac{i}{p^2 + i\epsilon}
$$
 de Donder
gauge

After symmetrization 100 terms ! =

higher order vertices…

 \sim 10³ terms

complicated diagrams:

On-shell simplifications

Graviton plane wave:

$$
\varepsilon^\mu(p) \varepsilon^\nu(p) \, e^{i p \cdot x}
$$

Yang-Mills polarization

On-shell 3-graviton vertex:

$$
\sum_{\mu_1,\mu_2,\mu_3}^{\mu_2} \sum_{\nu_3}^{\mu_3} \mu_3 = i\kappa \Big(\eta_{\mu_1\mu_2}(k_1 - k_2)_{\mu_3} + \text{cyclic} \Big) \Big(\eta_{\nu_1\nu_2}(k_1 - k_2)_{\nu_3} + \text{cyclic} \Big)
$$

$$
\sum_{k_1,\mu_1}^{\mu_1} \sum_{\nu_3}^{\mu_3} \sum_{\nu_4}^{\mu_4} \sum_{\nu_5}^{\mu_5} \sum_{\nu_6}^{\mu_7} \sum_{\nu_8}^{\mu_8} \sum_{\nu_9}^{\mu_9} \sum_{\nu_9}^{\mu_9} \sum_{\nu_9}^{\mu_9} \sum_{\nu_1}^{\mu_9} \sum_{\nu_1}^
$$

Gravity scattering amplitude:

$$
\sum_{\substack{\text{A}} \subset \mathbb{Z}} \mathbb{Z}^{\text{OR}} \quad M_{\text{tree}}^{\text{GR}}(1,2,3,4) = \frac{\text{st}}{u} A_{\text{tree}}^{\text{YM}}(1,2,3,4) \otimes A_{\text{tree}}^{\text{YM}}(1,2,3,4) \quad \text{Kawai, Lewellen, Tye}
$$

Gravity processes = "squares" of gauge theory ones - entire S-matrix $gravity = (gauge th) \otimes (gauge th)$ Bern, Carrasco, HJ

Historical record – where is the $N = 8$ div. ?

note: above arguments/proofs/speculation are only lower bounds

 \rightarrow only an explicit calculation can prove the existence of a divergence!

N =8 Amplitude and Counter Term Structure

 \sim

The critical dimension divergence tells us how many derivatives are pulled out of the integral \rightarrow counter term structure \mathcal{L}

$$
\partial^m R^4
$$
 @ L loops \leftrightarrow $D_c = 2 + \frac{6}{L} + \frac{m}{L}$

Known UV divergences in *D*>4

Plot of critical dimensions of $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

Siegel, Russo, Cederwall, Karlsson, and more.... Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, 3,4,5-loop calculations

3-loop *N* =8 SG & *N* =4 SYM

Using color-kinematics duality: Bern, Carrasco, HJ

$$
N^{(e)} = s(\tau_{45} + \tau_{15}) + \frac{1}{3}(t - s)(s + \tau_{15} - \tau_{25}) \qquad \tau_{ij} = 2k_i \cdot l_j
$$

UV divergent in D=6: Bern, Carrasco, Dixon, HJ, Kosower, Roiban Bern, Carrasco, Dixon, HJ, Roiban

 $\mathbf{1}$

 $\mathcal{A}^{(3)}$ $\overline{}$ $\vert_{\rm pole}$ $= 2g^8 st A^{tree}(N_c^3 V^{(A)} + 12N_c(V^{(A)} + 3V^{(B)})) \times (u \text{Tr}[T^{a_1} T^{a_2} T^{a_3} T^{a_4}] + \text{perms})$

$$
\mathcal{M}^{(3)}\Big|_{\rm pole} = 10 \Big(\frac{\kappa}{2}\Big)^8 (stu)^2 M^{\rm tree}(V^{(\rm A)} + 3V^{(\rm B)})
$$

4-loops: 85 diagrams, 2 masters 4 1 22 | 2012 | 2012 | 2012 | 2013 diagrams 2 mag $\overline{}$ 5 (66) $\sum_{n=1}^{\infty} a_n = a_n + a_n$ 8T A ⁸ ⁴ \cap) 2×11 \cup \cup \cup \cup o ra **IMPROTATE** ⁴ \sim 5 8 3 4 $5. \, \text{m...}$, $- \, \text{m...}$ nasters

(54)

³

⁴

(56)

(56)

4

4-loop *N* =8 SG and *N* =4 SYM

Bern, Carrasco, Dixon, HJ, Roiban 1201.5366

- •85 diagrams
- •Power counting manifest
- *•N* =4 & *N* =8 diverge in *D*=11/2

$$
N_6^{\text{SYM}} = \frac{1}{2} s_{12}^2 (\tau_{45} - \tau_{35} - s_{12})
$$

$$
N_6^{\text{SG}} = \left[\frac{1}{2} s_{12}^2 (\tau_{45} - \tau_{35} - s_{12})\right]^2
$$

$$
\left.\begin{array}{c}\n\text{2} \\
\text{6} \\
\text{6}\n\end{array}\right]
$$

 $\tau_{ij}=2k_i\cdot l_j$

$$
\mathcal{A}_4^{(4)}\Big|_{\rm pole} = -6g^{10} st A^{\rm tree} N_c^2 \Big(N_c^2 V_1 + 12(V_1 + 2V_2 + V_8) \Big) \times (u \text{Tr}_{1234} + \text{perms})
$$

$$
\mathcal{M}_{4}^{(4)}\Big|_{\rm pole}=-\frac{23}{8}\Big(\frac{\kappa}{2}\Big)^{10}stu(s^2+t^2+u^2)^2M^{\rm tree}(V_1+2V_2+V_8)
$$

up to overall factor, divergence same as for $N=4$ SYM $1/N_c^2$ part

5-loop \mathcal{N} =4 SYM the traditional way **STM LIIG LIQUILIUIIQI** 10

used in the ancillary file [23].

 727

 -0.5

 $\mathcal{F}_{\mathcal{A}}$

 $\begin{array}{c} \begin{array}{c} \sqrt{335} \end{array} \end{array}$

examples and \Box

 $N=4$ SYM important stepping stone to $N=8$ SG 1207.6666 [hep-th] ا
ا of the important definition of the system of \mathcal{B} ern

Bern, Carrasco, HJ, Roiban han Inch a first application, we have shown that simple patterns of \mathbf{S} is that simple patterns \mathbf{S} $\frac{1}{36}$ of $\frac{1}{36}$ $\frac{1}{307}$ $\frac{6666}{100}$ that fact that $\frac{1}{30}$ or $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ \frac epping stone to $y = 8$ SG and $y = 120$.0000 [nep-un] bern, carrasco, no, rrondan

20

 789

 χ^0

 Ω to the distribution field through five loops; the distribution Ω

 $\left(\begin{smallmatrix} 1 & 1 \end{smallmatrix}\right)$

 \mathcal{W}

 α excellent starting point to try to α

 (410)

 $\sum_{i=1}^n a_i$

 α

We thank S. Davies, T. L. Dennen, S. Ferrara, Y.-

V. A. Smirnov and K. Stelle for helpful discussions. We

 λ

 \forall discussions and \forall

 $x^2 + y^2 = 1$

- 416 nonvanishing relations eliminate most of the vacuum diagrams. Two integral topologies: $\widehat{}$ and the calculation on the calculation. The calculation of $\widehat{}$
- 22 September 2022 ut me Bern, Carrasco, HJ, Kosower · Used maximal cut method .
1 I evt methed σ by σ \sim \sim \sim \sim
	- Maximal cuts: 410
• Next-to-MC: 2473 $\begin{array}{c} 410 \\ +73 \end{array}$
	- Next-to-MC: 2473
	- N2MC: 7917
	- N³MC: 15156

Unitarity cuts done in *D* dimensions • N³MC: 15156 **where the lintegrated UV div. in D=26/5** $\frac{6}{\text{MC}}$ M_{MC} M_{NMC} $N^2 M_{\text{C}}$ $N^3 M_{\text{C}}$ $\curvearrowright \curvearrowright$ Unitarity cuts done in ν differentiations integrated by div. In $D=20/5$

 \bigvee_{α}

18 X 19

 (335) (370) (404) (410)

relations eliminate most of the vacuum diagrams. Two

FIG. 1: Sample graphs for the five-loop four-point N = 4 sYM amplitude. The graph labels correspond to the ones

 $\sqrt{2}$

 λ

 $R \times R$

 ζ

MC N^2MC N^3MC

 \bigcap

(370)

 (370)

N_{NC}

siderations in $\left(\begin{array}{c|c}\n\hline\n\hline\n\end{array} \right)$ Non-Planar UV divergence in $D=20/3$: $\bigvee_{i=1}^{\infty}$ $\bigvee_{i=1}^{\infty}$ $\bigvee_{i=1}^{\infty}$ Non-Planar UV divergence in *D*=26/5: Non-Planar IIV divergence in $D=26/5$ \longleftrightarrow $\frac{1}{2}$ vacuum integrals. For SU(Nc), it is integrals. In the supplication of the supplication of the supplication of the supplication of the s

$$
\mathcal{A}_4^{(5)}\Big|_{div} = -\frac{144}{5}g^{12} st A_4^{\text{tree}} N_c^3 \left(N_c^2 V^{(a)} + 12(V^{(a)} + 2V^{(b)} + V^{(c)})\right) \times \text{Tr}[T^{a_1} T^{a_2} T^{a_3} T^{a_4}]
$$

Key methods for 5 loops

Double copy is necessary

Unitarity & Ansätze possible way forward?

- Works for 5-loop *N*=4 SYM
- 5-loop SG seems too difficult (ansatz: billions of terms)

Pessimistic counting:

 $n^{\text{SYM}} \sim 8000 \text{ terms}$ $n^{\rm SG} \sim (8000)^2/2$ $\sim 30\,000\,000$ terms

Only way: use some form of double copy

- On maximal cuts \rightarrow naïve double copy works \rightarrow square SYM numerators
- On non-maximal cuts \rightarrow KLT works in principle, but not in practice
- KLT relations are non-local, non-crossing symmetric \rightarrow bad for loops
- Need something better than KLT, and less constraining than BCJ

Generalized double copy -- when color-kinematics duality is non-manifest

Generalized Double copy

Consider 4pt tree-level as warm-up:

Bern, Carrasco, Chen, HJ, Roiban

$$
\mathsf{YM} \qquad A_4^{\text{YM}} = \frac{n_s c_s}{s} + \frac{n_t c_t}{t} + \frac{n_u c_u}{u}
$$

Assume: not BCJ numerators

Gravity $M_4^{\text{GR}} = \frac{n_s \tilde{n}_s}{r} + \frac{n_t \tilde{n}_t}{r} + \frac{n_u \tilde{n}_u}{r} + \text{ contact}$

Contact terms have to to vanish if numerator Jacobi relation holds

$$
\begin{aligned}\n\text{contact} &\propto J = n_s + n_t + n_u \\
\text{contact} &\propto \widetilde{J} = \widetilde{n}_s + \widetilde{n}_t + \widetilde{n}_u\n\end{aligned}\n\bigg\} \Rightarrow \quad \text{contact} \sim J\widetilde{J}
$$

Note: example too simple since all 4pt tree numerators obey BCJ

Generalized Double copy

Bern, Carrasco, Chen, HJ, Roiban

Consider two 4pt trees in a unitarity cut:

L	YM	cut	$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{n_{i,j}c_{i,j}}{s_i^L s_j^R}$
GR	cut	$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{(n_{i,j})^2}{s_i^L s_j^R}$	
sum rows or columns	In fact, the contact is given by		
$\begin{bmatrix} n_{1,1} & n_{1,2} & n_{1,3} \\ n_{2,1} & n_{2,2} & n_{2,3} \\ n_{3,1} & n_{3,2} & n_{3,3} \end{bmatrix} \Rightarrow \begin{bmatrix} J_1^L \\ J_2^L \\ J_3^L \end{bmatrix}$	In fact, the contact is given by		
$\begin{bmatrix} J_1^R & J_2^R & J_3^R \\ J_2^L & J_3^R \end{bmatrix}$	ontract		
$\begin{bmatrix} J_1^R & J_2^R & J_3^R \\ J_2^L & J_3^R \end{bmatrix}$	ontract terms are bilinears in the Jacobian is a specific direction of i and j and j is a specific direction of j and j is a specific direction of j and j and j are the Jacobi discrepancies		
\Rightarrow appears to work for general cuts			

We can compute the integrand

Bern, Carrasco, Chen, Johansson, Roiban, Zeng

In 1708.06807 we compute the integrand

In addition to 410 cubic "top-level" diagrams we considered the contacts:

Total number of diagrams **~** 17000 Superficial divergence in D=4 \rightarrow Λ^4 power divergence in D=24/5 Too difficult to integrate! (it seemed)

Controlling UV behavior of *N*=4 SYM

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In order to remove the power divergence (of most diagrams)

- \rightarrow need to improve N=4 SYM numerators
- \rightarrow Push the SYM divergence into propagator diagrams

 \rightarrow Used Ansatz ~ 500k free parameters to move terms \rightarrow Imposed that all unitarity cuts remained unchanged

Now: using generlized double copy gives few power divergent integrals

Integrating the *N*=8 amplitude

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

Power-divergent contact diagrams are series expanded around soft external momenta (**=** infinite loop momenta).

 \rightarrow Gives vacuum diagrams with dots (propagators to higher power)

$$
I(p_i) \to I(\epsilon p_i) = \epsilon^{12} V_{\Lambda^4} + \epsilon^{14} V_{\Lambda^2} + \epsilon^{16} V_0 + \dots
$$

The improved *N* = 8 supergravity integrand

- \rightarrow has 8473 distinct diagrams before integration
- \rightarrow all cubic diagrams are manifestly log divergent in D=24/5.
- \rightarrow vacuum diagrams with at most 4 dots are needed
- \rightarrow ~140k distinct vacuum integrals

The old *N* = 8 supergravity integrand

- \rightarrow has \sim 17000 distinct diagrams before integration
- \rightarrow all cubic diagrams are quarticly divergent in *D=24/5*.
- \rightarrow vacuum diagrams have up to 6 dots
- \rightarrow ~17 million distinct vacuum integrals

The relevant vacuum topologies

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

Sprinkle with up to 4 dots \rightarrow full system

Summing up the result

In $D = 22 / 5$: UV finite, as expected. Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In *D* = 24 /5: considered 2.8 million relations between 850k integrals. System ∼1 billion nonzero entries. Sparse Gaussian elimination over finite fields \rightarrow 8 master integrals. Schabinger, von Manteuffel, 2014; Peraro, 2016

After summing over all contribution, all but two master cancels out

N=8 amplitude divergent in 24/5

Summary of *N*=8 SG divergences up to 5 loops

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In hindsight (after each calculation), the results are strikingly simple

$$
\mathcal{M}_{4}^{(1)}\Big|_{\text{leading}} = -3\,\mathcal{K}_{G}\,\left(\frac{\kappa}{2}\right)^{4}\,\,\widehat{\bigcup_{\text{leading}}} \,,
$$
\n
$$
\mathcal{M}_{4}^{(2)}\Big|_{\text{leading}} = -8\,\mathcal{K}_{G}\,\left(\frac{\kappa}{2}\right)^{6}\,(s^{2} + t^{2} + u^{2})\,\left(\frac{1}{4}\,\,\widehat{\bigcup_{\text{4}}}\, + \frac{1}{4}\,\,\widehat{\bigcup_{\text{5}}}\right),
$$
\n
$$
\mathcal{M}_{4}^{(3)}\Big|_{\text{leading}} = -60\,\mathcal{K}_{G}\,\left(\frac{\kappa}{2}\right)^{8}\,stu\,\left(\frac{1}{6}\,\,\widehat{\bigcup_{\text{5}}}\, + \frac{1}{2}\,\,\widehat{\bigcup_{\text{6}}}\right),
$$
\n
$$
\mathcal{M}_{4}^{(4)}\Big|_{\text{leading}} = -\frac{23}{2}\,\mathcal{K}_{G}\,\left(\frac{\kappa}{2}\right)^{10}\,(s^{2} + t^{2} + u^{2})^{2}\,\left(\frac{1}{4}\,\,\widehat{\bigcup_{\text{6}}}\, + \frac{1}{2}\,\,\widehat{\bigcup_{\text{7}}}\, + \frac{1}{4}\,\,\widehat{\bigcup_{\text{8}}}\right),
$$
\n
$$
\mathcal{M}_{4}^{(5)}\Big|_{\text{leading}} = -\frac{16\times629}{25}\,\mathcal{K}_{G}\,\left(\frac{\kappa}{2}\right)^{12}\,(s^{2} + t^{2} + u^{2})^{2}\,\left(\frac{1}{48}\,\,\widehat{\bigcup_{\text{7}}}\, + \frac{1}{16}\,\,\widehat{\bigcup_{\text{8}}}\right),
$$

Can we use this pattern to predict behavior at $L = 6$ and $L = 7$?

Possible all-loop patterns?

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

 \rightarrow Cross-order relations from removing or cutting propagators

- \rightarrow No triangle property for vacuum graphs
- \rightarrow Color-kinematics duality for N=4 propagator diagrams predicts correct relative factors.
- \rightarrow When integrating only vacuums diagrams with up to 4 dots needed allowed us to integrate old $N=8$ integrand \rightarrow same answer.

Suggest that there is hope of obtaining 6 and 7 loop results !

Summary

- Explicit calculation in $N = 8$ SUGRA at five loops show that the \bullet theory is worse behaved in $D>4$ than $\mathcal{N}=4$ SYM.
- However, the implication for the *D*=4 theory is unclear.
- If good UV behavior of N=8 is tied to four-dimensional properties - \bullet as suggested by various proposed mechanisms – then *D*=24/5 might not mean much.
- 7 loop calculation in *D*=4 is thus more critical than ever
- Generalized double copy critical for 5-loop calculation, however color- kinematics duality has some glitch at 5 loops that is not yet understood
- Suggestive cross-order patterns in UV divergences of *N* =8 SUGRA and as well as *N* =4 SYM implies hidden simplicity for future calculations.
- Stay tuned for the 6- and 7-loop calculations!