

N=8 Supergravity at Five Loops

Henrik Johansson Uppsala U. & Nordita

Amplitudes in the LHC era GGI Florence, Oct 31, 2018

Based on recent work: 1701.02519, 1708.06807, 1804.09311

w/ Zvi Bern, John Joseph Carrasco, Wei-Ming Chen,

Alex Edison, Julio Parra-Martinez, Radu Roiban, Mao Zeng and older work: 0702112, 0905.2326, 1008.3327, 1201.5366

w/ Zvi Bern, John Joseph Carrasco, Lance Dixon, David Kosower, Radu Roiban

Outline

- Motivation & Review:
 - Status of N=8 SUGRA UV behavior
 - Previous 3,4 loop results
- Key steps in calculation
 - Generalized double copy for gravity ampl.
 - Controlling UV behavior of N=4 SYM
 - Improved UV integration, IBP & vacuum diag.
- Results at 5 loops
 - The critical UV behavior at 5 loops
 - Simplicity in pattern of diagrams
- Conclusion

SUGRA status on one page

Known facts:

Susy forbids 1,2 loop div. \mathbb{R}^2 , \mathbb{R}^3

Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström, Green, Schwarz, Brink, Marcus, Sagnotti

- Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti
- With matter: 1-loop divergent 't Hooft & Veltman
- Naively susy allows 3-loop div. R⁴
- $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SG 3-loop finite! Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Davies, Dennen, Huang
- **▶** \mathcal{N} =8 SG: no divergence before 7 loops
- m D>4 divergences @ L=2,3,4 $D_c=4+rac{6}{L}$ Marcus, Sagnotti, Bern, Dixon, Dunbar, Perelstein, Rozowsky, Carrasco, HJ, Kosower, Roiban

- Only known D=4 SG divergence: Bern, Davies, Dennen, Smirnov² $\mathcal{N}=4$ @ 4 loops (\rightarrow more questions than answers)
- 7-loop D=4 calculation difficult instead work out 5 loops in D=24/5 → this talk

Why is it interesting?

- **■** If \mathcal{N} =8 SG is perturbatively finite, why is it interesting ?
- It might be finite for a good reason!
 - hidden new symmetry
 - Other mechanism or structure → open a host of possibilities
- Any indication of hidden structures yet?
 - Gravity is a double copy of gauge theories
 - Color-Kinematics: kinematics = Lie algebra Bern, Carrasco, HJ
 - Constraints from E-M duality ? Kallosh et al., Nicolai, Roiban, Freedman
 - Hidden superconformal symmetry ?
 Ferrara, Kallosh, Van Proeyen; Loebbert, Mojaza, Plefka;
 HJ, Mogull, Teng; Caron-Huot, Trinh, ...
 - **■** Extended *N*=4 superspace ? Bossard, Howe, Stelle
 - Exceptional field theory Bossard, Kleinschmidt

UV problem = basic power counting

Naively expect gravity to behave worse than Yang-Mills

Gravity: non-renormalizable dimensionful coupling

Yang-Mills: renormalizable dimensionless coupling

$$\sim \int d^{4L} p \frac{\dots (gp^{\mu}) \dots}{p_1^2 p_2^2 p_3^2 \dots p_n^2}$$

For finite gravity \rightarrow vast cancellations needed $\sim (p^\mu)^{2L} \rightarrow (k^\mu)^{2L}$ seems implausible, but exists for N=8 SG in all known ampl's.

Textbook perturbative gravity is complicated!

$${\cal L}=rac{2}{\kappa^2}\sqrt{g}R,~~g_{\mu
u}=\eta_{\mu
u}+\kappa h_{\mu
u}$$

$$\bigvee_{\mu_1}^{\nu_1} \bigvee_{\mu_2}^{\nu_2} = \frac{1}{2} \left[\eta_{\mu_1 \nu_1} \eta_{\mu_2 \nu_2} + \eta_{\mu_1 \nu_2} \eta_{\nu_1 \mu_2} - \frac{2}{D-2} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2} \right] \frac{i}{p^2 + i\epsilon} \qquad \text{de Donder gauge}$$

$$\begin{array}{c} k_2 \\ \mu_2 \\ \mu_3 \\ \nu_3 \\ \end{array} \\ = \mathrm{sym}[-\frac{1}{2} P_3 (k_1 \cdot k_2 \eta_{\mu_1 \nu_1} \eta_{\mu_2 \nu_2} \eta_{\mu_3 \nu_3}) - \frac{1}{2} P_6 (k_{1 \mu_1} k_{1 \nu_2} \eta_{\mu_1 \nu_1} \eta_{\mu_3 \nu_3}) \\ + P_6 (k_1 \cdot k_2 \eta_{\mu_1 \nu_1} \eta_{\mu_2 \mu_3} \eta_{\nu_2 \nu_3}) + 2 P_3 (k_{1 \mu_2} k_{1 \nu_3} \eta_{\mu_1 \nu_1} \eta_{\nu_2 \mu_3}) \\ + P_3 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \nu_2} k_{2 \mu_1} \eta_{\nu_2 \mu_3} \eta_{\nu_2 \nu_3}) \\ + P_3 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{1 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\mu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\nu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\nu_1 \mu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\nu_1 \mu_2} \eta_{\nu_1 \nu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\nu_1 \nu_2} \eta_{\nu_1 \nu_2} \eta_{\nu_1 \nu_2} \eta_{\nu_1 \nu_2}) \\ + P_6 (k_{1 \mu_3} k_{2 \nu_3} \eta_{\nu_1 \nu_2} \eta_{\nu_1 \nu_2} \eta_{\nu_1$$

higher order vertices...

 $\sim 10^3$ terms

complicated diagrams:

On-shell simplifications

Graviton plane wave:

$$\varepsilon^{\mu}(p)\varepsilon^{\nu}(p)\,e^{ip\cdot x}$$

Yang-Mills polarization

On-shell 3-graviton vertex:

Gravity scattering amplitude:

Yang-Mills amplitude
$$M_{\rm tree}^{\rm GR}(1,2,3,4)=\frac{st}{u}A_{\rm tree}^{\rm YM}(1,2,3,4)\otimes A_{\rm tree}^{\rm YM}(1,2,3,4)$$
 Kawai, Lewellen, Tye

Gravity processes = "squares" of gauge theory ones - entire S-matrix

$$\operatorname{gravity} = (\operatorname{gauge} \, \operatorname{th}) \otimes (\operatorname{gauge} \, \operatorname{th})$$
 Bern, Carrasco, HJ

Historical record – where is the $\mathcal{N}=8$ div. ?

3 loops	Conventional superspace power counting	Green, Schwarz, Brink (1982) Howe and Stelle (1989) Marcus and Sagnotti (1985)		
5 loops	Partial analysis of unitarity cuts; If \mathcal{N} = 6 harmonic superspace exists; algebraic renormalisation	Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998) Howe and Stelle (2003,2009)		
6 loops	If $\mathcal{N}=7$ harmonic superspace exists	Howe and Stelle (2003)		
7 loops	If \mathcal{N} = 8 harmonic superspace exists; string theory U-duality analysis; lightcone gauge locality arguments; $E_{7(7)}$ analysis, unique 1/8 BPS candidate	Grisaru and Siegel (1982); Green, Russo, Vanhove; Kallosh; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove		
8 loops	Explicit identification of potential susy invariant counterterm with full non-linear susy	Howe and Lindström; Kallosh (1981)		
9 loops	Assume Berkovits' superstring non-renormalization theorems can be carried over to $\mathcal{N}=8$ supergravity	Green, Russo, Vanhove (2006)		
Finite	Identified cancellations in multiloop amplitudes; lightcone gauge locality and E ₇₍₇₎ , inherited from hidden N=4 SC gravity	Bern, Dixon, Roiban (2006), Kallosh (2009–12), Ferrara, Kallosh, Van Proeyen (2012)		

note: above arguments/proofs/speculation are only lower bounds

→ only an explicit calculation can prove the existence of a divergence!

\mathcal{N} =8 Amplitude and Counter Term Structure

Loop order	4pt amplitude form (any dimension)	divergence first occurs in	Counter ter	$egin{aligned} M_4^{\mathrm{tree}} stu \sim R^4 \end{aligned}$
1	$R^4 imes (ext{intgrl.})$	$D_c = 8$	$\sim R^4$	Green, Schwarz, Brink
2	$\partial^4 R^4 imes (ext{intgrl.})$	$D_c = 7$	$\sim \partial^4 R^4$	Bern, Dixon, Dunbar, Perelstein, Rozowsky
3	$\partial^6 R^4 imes (ext{intgrl.})$	$D_c = 6$	$\sim \partial^6 R^4$	Bern, Carrasco, Dixon, HJ, Kosower, Roiban
4	$\partial^8 R^4 imes ext{(intgrl.)}$	$D_c = 5.5$	$\sim \partial^8 R^4$	Bern, Carrasco, Dixon, HJ, Roiban
[5]	? $\partial^8 R^4 imes ext{(intgrl.)}$? $\partial^{10} R^4 imes ext{(intgrl.)}$	$D_{\rm c} = 24/5$?	$\sim \partial^8 R^4$?
	? $\partial^{10}R^4 \times (\text{intgrl.})$	$D_{\rm c} = 26/5$?	$\sim \partial^{10} R^4$?

The critical dimension divergence tells us how many derivatives are pulled out of the integral → counter term structure

$$\partial^m R^4$$
 @ $L \text{ loops} \leftrightarrow D_c = 2 + \frac{6}{L} + \frac{m}{L}$

Known UV divergences in *D*>4

Plot of critical dimensions of $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

L = 7 lowest loop order for possible D = 4 divergence

Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru,

Siegel, Russo, Cederwall, Karlsson, and more....

3,4,5-loop calculations

3-loop $\mathcal{N}=8$ SG & $\mathcal{N}=4$ SYM

Using color-kinematics duality: Bern, Carrasco, HJ

UV divergent in D=6: Bern, Carrasco, Dixon, HJ, Kosower, Roiban Bern, Carrasco, Dixon, HJ, Roiban

$$\mathcal{A}^{(3)}\Big|_{\text{pole}} = 2g^8 st A^{\text{tree}} (N_c^3 V^{(A)} + 12N_c (\underline{V^{(A)} + 3V^{(B)}})) \times (u \text{Tr}[T^{a_1} T^{a_2} T^{a_3} T^{a_4}] + \text{perms})$$

$$\mathcal{M}^{(3)}\Big|_{\text{pole}} = 10\Big(\frac{\kappa}{2}\Big)^8 (stu)^2 M^{\text{tree}}(\underline{V^{(A)} + 3V^{(B)}})$$

4-loops: 85 diagrams, 2 masters

4-loop $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SYM

Bern, Carrasco, Dixon, HJ, Roiban 1201.5366

- 85 diagrams
- Power counting manifest
- • \mathcal{N} =4 & \mathcal{N} =8 diverge in D=11/2

$$N_6^{
m SYM} = rac{1}{2} s_{12}^2 (au_{45} - au_{35} - s_{12}) \ N_6^{
m SG} = \left[rac{1}{2} s_{12}^2 (au_{45} - au_{35} - s_{12})
ight]^2 \ au_{ij} = 2k_i \cdot l_j$$

$$\mathcal{A}_{4}^{(4)}\Big|_{\text{pole}} = -6g^{10}stA^{\text{tree}}N_c^2\Big(N_c^2V_1 + 12(\underline{V_1 + 2V_2 + V_8})\Big) \times (u\text{Tr}_{1234} + \text{perms})$$

$$\mathcal{M}_{4}^{(4)}\Big|_{\text{pole}} = -\frac{23}{8} \left(\frac{\kappa}{2}\right)^{10} stu(s^2 + t^2 + u^2)^2 M^{\text{tree}}(V_1 + 2V_2 + V_8)$$

up to overall factor, divergence same as for $\mathcal{N}=4$ SYM $1/N_c^2$ part

5-loop \mathcal{N} =4 SYM the traditional way

 \mathcal{N} =4 SYM important stepping stone to \mathcal{N} =8 SG

1207.6666 [hep-th]
Bern, Carrasco, HJ, Roiban

416 nonvanishing integral topologies:

 Used maximal cut method Bern, Carrasco, HJ, Kosower

Maximal cuts: 410

Next-to-MC: 2473

• N²MC: 7917

• N³MC: 15156

Unitarity cuts done in D dimensions integrated UV div. in D=26/5

Non-Planar UV divergence in D=26/5:

$$\mathcal{A}_{4}^{(5)}\Big|_{\text{div}} = -\frac{144}{5}g^{12}stA_{4}^{\text{tree}}N_{c}^{3}\left(N_{c}^{2}V^{(a)} + 12(V^{(a)} + 2V^{(b)} + V^{(c)})\right) \times \text{Tr}\left[T^{a_{1}}T^{a_{2}}T^{a_{3}}T^{a_{4}}\right]$$

Key methods for 5 loops

Double copy is necessary

Unitarity & Ansätze possible way forward?

- Works for 5-loop *N*=4 SYM
- 5-loop SG seems too difficult (ansatz: billions of terms)

Pessimistic counting:

 $n^{\rm SYM} \sim 8000 \ {\rm terms}$ $n^{\rm SG} \sim (8000)^2/2$ $\sim 30\,000\,000 \ {\rm terms}$

Only way: use some form of double copy

- On maximal cuts → naïve double copy works → square SYM numerators
- On non-maximal cuts → KLT works in principle, but not in practice
- KLT relations are non-local, non-crossing symmetric → bad for loops
- Need something better than KLT, and less constraining than BCJ

Generalized double copy - when color-kinematics duality is non-manifest

Generalized Double copy

Bern, Carrasco, Chen, HJ, Roiban

Consider 4pt tree-level as warm-up:

YM
$$A_4^{
m YM}=rac{n_sc_s}{s}+rac{n_tc_t}{t}+rac{n_uc_u}{u}$$
 Assume: not BCJ numerators

Gravity
$$M_4^{\rm GR} = \frac{n_s \tilde{n}_s}{s} + \frac{n_t \tilde{n}_t}{t} + \frac{n_u \tilde{n}_u}{u} + {\rm contact}$$

Contact terms have to to vanish if numerator Jacobi relation holds

$$\begin{array}{ccc}
\operatorname{contact} & \propto J = n_s + n_t + n_u \\
\operatorname{contact} & \propto \widetilde{J} = \widetilde{n}_s + \widetilde{n}_t + \widetilde{n}_u
\end{array} \Rightarrow \operatorname{contact} \sim J\widetilde{J}$$

Note: example too simple since all 4pt tree numerators obey BCJ

Generalized Double copy

Bern, Carrasco, Chen, HJ, Roiban

Consider two 4pt trees in a unitarity cut:

YM cut =
$$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{n_{i,j} c_{i,j}}{s_i^{L} s_j^{R}}$$

GR cut =
$$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{(n_{i,j})^2}{s_i^L s_j^R} + \text{contact}$$

sum rows or columns

In fact, the contact is given by

$$contact = \frac{J_i^{L} J_j^{R}}{s_j^{L} s_i^{R}}$$

independent of i and j

- contact terms are bilinears in the Jacobi discrepancies
- → appears to work for general cuts

We can compute the integrand

Bern, Carrasco, Chen, Johansson, Roiban, Zeng

In 1708.06807 we compute the integrand

In addition to 410 cubic "top-level" diagrams we considered the contacts:

lavval	total # of diagrams	number of contact interactions					#vanishing	
ievei		1	2	3	4	5	6	
1	2,473	2,473	0	0	0	0	0	2473
2	7,917	1,597	6,320	0	0	0	0	6158
3	15,156	940	6,710	7,506	0	0	0	11894
4	19,567	434	5,232	9,510	4,391	0	0	14980
5	17,305	203	3,012	7,792	5,185	1,113	0	13239
6	10,745	83	1,567	4,407	3,694	896	98	7941

Total number of diagrams \sim 17000 Superficial divergence in D=4 \rightarrow Λ^4 power divergence in D=24/5

Too difficult to integrate! (it seemed)

Controlling UV behavior of N=4 SYM

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In order to remove the power divergence (of most diagrams)

- \rightarrow need to improve N=4 SYM numerators
- → Push the SYM divergence into propagator diagrams

- → Used Ansatz ~ 500k free parameters to move terms
- → Imposed that all unitarity cuts remained unchanged

Now: using generlized double copy gives few power divergent integrals

Integrating the *N*=8 amplitude

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

Power-divergent contact diagrams are series expanded around soft external momenta (= infinite loop momenta).

→ Gives vacuum diagrams with dots (propagators to higher power)

$$I(p_i) \to I(\epsilon p_i) = \epsilon^{12} V_{\Lambda^4} + \epsilon^{14} V_{\Lambda^2} + \epsilon^{16} V_0 + \dots$$

The improved N = 8 supergravity integrand

- → has 8473 distinct diagrams before integration
- \rightarrow all cubic diagrams are manifestly log divergent in D=24/5.
- → vacuum diagrams with at most 4 dots are needed
- → ~140k distinct vacuum integrals

The old N = 8 supergravity integrand

- → has ~ 17000 distinct diagrams before integration
- \rightarrow all cubic diagrams are quarticly divergent in D=24/5.
- → vacuum diagrams have up to 6 dots
- → ~ 17 million distinct vacuum integrals

The relevant vacuum topologies

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

Sprinkle with up to 4 dots → full system

Summing up the result

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In D = 22 / 5: UV finite, as expected.

In D = 24 /5: considered 2.8 million relations between 850k integrals. System ~1 billion nonzero entries. Sparse Gaussian elimination over finite fields \rightarrow 8 master integrals. Schabinger, von Manteuffel, 2014; Peraro, 2016

After summing over all contribution, all but two master cancels out

$$\frac{1}{48} \bigcirc + \frac{1}{16} \bigcirc + 0 \bigcirc + 0 \bigcirc + 0 \bigcirc$$

$$+0 \bigcirc + 0 \bigcirc + 0 \bigcirc + 0 \bigcirc$$

N=8 amplitude divergent in 24/5

Summary of *N*=8 SG divergences up to 5 loops

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

In hindsight (after each calculation), the results are strikingly simple

$$\begin{split} \mathcal{M}_{4}^{(1)}\Big|_{\text{leading}} &= -3\,\mathcal{K}_{\text{G}}\,\left(\frac{\kappa}{2}\right)^{4}\, \bigodot, \\ \mathcal{M}_{4}^{(2)}\Big|_{\text{leading}} &= -8\,\mathcal{K}_{\text{G}}\,\left(\frac{\kappa}{2}\right)^{6}\,(s^{2}+t^{2}+u^{2})\,\left(\frac{1}{4}\,\bigodot, +\frac{1}{4}\,\bigodot, \right), \\ \mathcal{M}_{4}^{(3)}\Big|_{\text{leading}} &= -60\,\mathcal{K}_{\text{G}}\,\left(\frac{\kappa}{2}\right)^{8}\,stu\,\left(\frac{1}{6}\,\bigodot, +\frac{1}{2}\,\bigodot, \right), \\ \mathcal{M}_{4}^{(4)}\Big|_{\text{leading}} &= -\frac{23}{2}\,\mathcal{K}_{\text{G}}\,\left(\frac{\kappa}{2}\right)^{10}\,(s^{2}+t^{2}+u^{2})^{2}\,\left(\frac{1}{4}\,\bigodot, +\frac{1}{2}\,\bigodot, +\frac{1}{4}\,\bigodot, \right), \\ \mathcal{M}_{4}^{(5)}\Big|_{\text{leading}} &= -\frac{16\times629}{25}\,\mathcal{K}_{\text{G}}\,\left(\frac{\kappa}{2}\right)^{12}\,(s^{2}+t^{2}+u^{2})^{2}\,\left(\frac{1}{48}\,\bigodot, +\frac{1}{16}\,\bigodot, +\frac{1}{16}\,\bigodot, \right), \end{split}$$

Can we use this pattern to predict behavior at L = 6 and L = 7?

Possible all-loop patterns?

Bern, Carrasco, Chen, Edison, HJ, Parra-Martinez, Roiban, Zeng

→ Cross-order relations from removing or cutting propagators

- → No triangle property for vacuum graphs
- → Color-kinematics duality for N=4 propagator diagrams predicts correct relative factors.
- → When integrating only vacuums diagrams with up to 4 dots needed allowed us to integrate old N=8 integrand → same answer.

Suggest that there is hope of obtaining 6 and 7 loop results!

Summary

- **Explicit calculation in** $\mathcal{N}=8$ **SUGRA** at five loops show that the theory is worse behaved in D>4 than $\mathcal{N}=4$ **SYM.**
- **■** However, the implication for the D=4 theory is unclear.
- If good UV behavior of N=8 is tied to four-dimensional properties as suggested by various proposed mechanisms then D=24/5 might not mean much.
- 7 loop calculation in D=4 is thus more critical than ever
- Generalized double copy critical for 5-loop calculation, however color-kinematics duality has some glitch at 5 loops that is not yet understood
- Suggestive cross-order patterns in UV divergences of $\mathcal{N}=8$ SUGRA and as well as $\mathcal{N}=4$ SYM implies hidden simplicity for future calculations.
- Stay tuned for the 6- and 7-loop calculations!