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SPS BA6
• LLRF controls are located in 

Faraday Cage at BA6. 

• Crab cavities are in the SPS 
tunnel underneath the 
faraday cage

logo
area

SPS BA6 infrastructure (2/2)

� The loop delay LLRF-TX-Cavity-LLRF will be similar in 
the LHC implementation (1.5-2.5 us), we can simulate 
different loop delays
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Routing ∼ 150𝑚 in length

Space on Surface (200 𝑚ଶ)

Faraday cage 
platform

BA6

Faraday Cage

Crab Cavities (CCs)
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LLRF scheme
• Diagram of the LLRF schemes for SPS crab cavity: Tuner loop plus RF feedback
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LLRF modules

Tuner Loop module 
Adapted from L4

Cavity Loop module 
Adapted from SPS 800 MHz 

and L4   
Firmware modified
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GUI panel: Tuner controls
• GUI panel for Tuner control : adapted from Linac4. The CC tuner acts 

by deforming the deflecting gap. Its response is VERY slow (below 
1/10 Hz).
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GUI panel: RF feedback
• GUI panel for RF feedback: created for SPS CCs. We have a PI 

controller, for each cavity.
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Status LLRF for SPS CCs



Tuner Loop
• Tuner control :  

— SM18: Tuner Loop worked well at very low cavity field in both the 
vertical test-stand and the DQW. The TX was a 200 W solid-state 
amplifier. 

— First 4 MDs: large fluctuations (more than one BW, at a 1 second rate) 
on cavity field at 4K, likely caused by He ebullition (?). This is out of the 
range of tuner loop compensation 

— MD5: 2K Cryo temperature 

cavity field < 800kV: Loop works OK on CC2 

cavity field > 800kV: cannot use Loop (large fluctuation in 
measurement signals) 

CC1 could not operate
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!
— Setting up FDBK is not easy due to the non-linearity of IOT amplifier. 

Nominal transmitter power is 100 kW, while we operate around 1-2 kW. So 
the fdbk phase/gain must be adjusted as we increase the field. Tedious…  
— MD5: operate close to the multipacting level of the cavities. Therefore 

transients in TX drive have dramatic effects->Trip cavity. 

RF feedback (FDBK) Loop
— First 4 MDs : fdbk control can regulate the 
fields in presence of the large tune variations.  
!
We see a direct coupling of beam passage in 
the ANT used by fdbk: should be reduced by 
inserting low pass filter on ANT signal. 
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LLRF features for CCs



• Voltage set-point (Amp/Phase) can be changed by function. 
• Cavity phase scan w.r.t beam centre (Done : MD1-4) 
• Counter-phasing both CCs (to be tested this year?)
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Signal processing detailed
Version 3: Coupled-cavities feedback
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Function for voltage set-point
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• Coupled feedback system: keep the two crab voltages equal by 
monitoring the difference. (Tested this year?)
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Coupled feedback system
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• Phase and amplitude noise (MD5: emittance growth measurements)

Excitation noise injection



!
• Adapted Python scripts from LHC LLRF system 
• Open-loop and close-loop response at nominal TX power

After running through a transfer function estimate 

routine and then plotting the resultant function on a 

magnitude plot we get a result as shown in Figure 3.  Both 

the fit and the measured data are shown on the same plot.  

By fitting to the measured data, we can very accurately 

calculate required adjustments to the cavity phase angle 

adjustment in the set point module. 
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Figure 3: Magnitude and phase response of analog/digital 

paths. 

Open Loop Adjustment 
The above two steps should be done only once: At 

commissioning (or when replacing a faulty LLRF 

module). From here on however, we present adjustment 

tools that will be used when changing the parameters of 

the RF chain (coupler positions, klystron current, klystron 

power – saturation effect, cavity detuning).  

In this step we measure the entire loop including the 

klystron, circulator and cavity.  From this measurement, 

we can set the overall loop phase and gain so that when 

the loop is closed, it will be very nearly ideally aligned.  

To minimize the effect of klystron power supply ripple, 

we converged upon a scheme where we temporarily 

disable the digital feedback (and its large gain), such that  

the large ripple from the klystron power supply is filtered 

out.  The steps in this procedure are nearly identical to 

those in the Analog/Digital phase alignment procedure.  

As can be seen in Figure 4, an initial measurement is 

taken and then the overall loop phase is adjusted until the 

overall response is at 180 degrees. 
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Figure 4: Initial and rotated loop phase. 

Closed Loop Measurement 
The closed loop measurement routine, first lowers the 

gain in the analog and digital feedback, referring to figure 

2, and then close the loop using the loop switch in the RF 

modulator module.  We then do the exact same 

measurement as before in the previous two routines. 

This routine will be used routinely and in fact will be 

the only routine which could potentially be run with 

beam.  At first it will not be run with beam, but follow on 

work may be done to enable the LHC LLRF team to make 

parasitic measurements without perturbing the beam.  

Figure 5 shows some preliminary results from the closed 

loop response and fitting. 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-40

-20

0

20

Frequency (MHz)

G
ai

n 
(d

B
)

 

 
Fit
Data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-500

0

500

1000

Frequency (MHz)

P
ha

se
 (d

eg
re

es
)

 
Figure 5: Closed loop measurement and fit. 

CONCLUSIONS AND FUTURE WORK 
We have presented an overview of the tools and 

progress to date on the remote alignment tools for the 

LHC LLRF.  There is more work to be done.  The 

Klystron used in this system has a gain bump 

approximately 4 MHz away from the center frequency.  

The RF Feedback modules contain a variable frequency 

resonant notch which is used to mitigate this gain bump.   

We are currently working on a routine to automate the 

alignment of that notch.  In addition, more work needs to 

be done on the closed loop routine so that we can properly 

suggest changes to the loop gain and phase.  Finally, the 

LHC LLRF polar loop around the Klystron needs initial 

alignment and closed loop verification.  The polar loop 

routine will also be remotely configurable. 
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After running through a transfer function estimate 

routine and then plotting the resultant function on a 

magnitude plot we get a result as shown in Figure 3.  Both 

the fit and the measured data are shown on the same plot.  

By fitting to the measured data, we can very accurately 

calculate required adjustments to the cavity phase angle 

adjustment in the set point module. 
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Figure 3: Magnitude and phase response of analog/digital 

paths. 

Open Loop Adjustment 
The above two steps should be done only once: At 

commissioning (or when replacing a faulty LLRF 

module). From here on however, we present adjustment 

tools that will be used when changing the parameters of 

the RF chain (coupler positions, klystron current, klystron 

power – saturation effect, cavity detuning).  

In this step we measure the entire loop including the 

klystron, circulator and cavity.  From this measurement, 

we can set the overall loop phase and gain so that when 

the loop is closed, it will be very nearly ideally aligned.  

To minimize the effect of klystron power supply ripple, 

we converged upon a scheme where we temporarily 

disable the digital feedback (and its large gain), such that  

the large ripple from the klystron power supply is filtered 

out.  The steps in this procedure are nearly identical to 

those in the Analog/Digital phase alignment procedure.  

As can be seen in Figure 4, an initial measurement is 

taken and then the overall loop phase is adjusted until the 

overall response is at 180 degrees. 
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Figure 4: Initial and rotated loop phase. 

Closed Loop Measurement 
The closed loop measurement routine, first lowers the 

gain in the analog and digital feedback, referring to figure 

2, and then close the loop using the loop switch in the RF 

modulator module.  We then do the exact same 

measurement as before in the previous two routines. 

This routine will be used routinely and in fact will be 

the only routine which could potentially be run with 

beam.  At first it will not be run with beam, but follow on 

work may be done to enable the LHC LLRF team to make 

parasitic measurements without perturbing the beam.  

Figure 5 shows some preliminary results from the closed 

loop response and fitting. 
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Figure 5: Closed loop measurement and fit. 

CONCLUSIONS AND FUTURE WORK 
We have presented an overview of the tools and 

progress to date on the remote alignment tools for the 

LHC LLRF.  There is more work to be done.  The 

Klystron used in this system has a gain bump 

approximately 4 MHz away from the center frequency.  

The RF Feedback modules contain a variable frequency 

resonant notch which is used to mitigate this gain bump.   

We are currently working on a routine to automate the 

alignment of that notch.  In addition, more work needs to 

be done on the closed loop routine so that we can properly 

suggest changes to the loop gain and phase.  Finally, the 

LHC LLRF polar loop around the Klystron needs initial 

alignment and closed loop verification.  The polar loop 

routine will also be remotely configurable. 
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Signal processing detailed
Version 4: Coupled-cavities feedback
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Online analysis of LLRF feedback system



Plans for next MDs
• Hopefully work with both cavities at >1MV  

• Clean injection of amplitude and phase noise for transverse 
emittance  growth measurement. 

• Tuner Loop working if we are far enough from multipacting. 

• High intensity batches ? 

• Filtering of the ANT signal to reject direct coupling with 
beam passage 

• Tighter clamping of demanded TX power to avoid tripping 
on transients 

!

!
!
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Noise Injection

• Phase and amplitude noise (emittance growth measurements)

Excitation noise injection


