

Parton Distributions with MHO uncertainties

Juan Rojo VU Amsterdam & Nikhef Theory group

PDF4LHC Working Group meeting

CERN, 13/12/2018

Juan Rojo

PDF4LHC meeting, 13/12/2018

Theory uncertainties from MHOs

Standard global PDF fits are based on fixed-order QCD calculations

$$\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})$$

The truncation of the perturbative series has associated a theoretical uncertainty known as **Missing Higher Order (MHO)** uncertainty

Theory uncertainties from MHOs

How severe is **ignoring MHOUs** in modern global PDFs fits?

Shift between NLO and NNLO PDFs comparable or larger than PDF errors

Given the high precision of modern PDF determinations, accounting for MHOUs is most urgent!

The strategy

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(\text{cov}^{(\text{exp})} + \text{cov}^{(\text{th})} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$

In addition, as a validation tool, we also:

Perform **multiple PDF fits** for a range of values of μ_R and μ_F MHOUs on the PDFs estimated as the **envelope of fits** with different scales

This exercise is also useful to understand the impact that varying μ_R and μ_F have on the fitted PDFs (never studied before)

PDF fits with scale variations

Perform multiple PDF fits for a range of values of μ_R and μ_F MHOUs on the PDFs estimated as the **envelope of fits** with different scales

Require assumptions about the **theory-induced correlations** between different processes, e.g. between DIS and jet production

PDF fits with scale variations

Perform **multiple PDF fits** for a range of values of μ_R and μ_F MHOUs on the PDFs estimated as the **envelope of fits** with different scales

- $\frac{1}{2}$ The scale-variation envelope works fine in most cases (too conservative at small-x?)
- CPU-intensive and cumbersome for general LHC applications
- Keep track of scale correlations between input PDFs and produced LHC processes

Juan Rojo

PDF4LHC meeting, 13/12/2018

PDF fits with scale variations

Perform multiple PDF fits for a range of values of μ_R and μ_F MHOUs on the PDFs estimated as the **envelope of fits** with different scales

MHOUs on PDFs decrease when going from NLO to NNLO theory, as expected

 \therefore MHOUs most relevant when PDF uncertainties are smallest, e.g. at medium-x

The role of correlations

MHOUs are **fully correlated uncertainties** (no statistical component): Can lead to large changes in PDF central values with small changes in χ^2

Juan Rojo

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Most global PDF fits are based on the minimisation of a figure of merit of the form:

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(\text{cov}^{(\text{exp})} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$

If experimental and theory errors are independent and Gaussian, one has

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(\operatorname{cov}^{(\exp)} + \operatorname{cov}^{(\operatorname{th})} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$
Ball, Deshpande 18

The theory covariance matrix can be computed in terms of nuisance parameters

$$\operatorname{cov}^{(\operatorname{th})}_{ij} = \frac{1}{N} \sum_{k} \Delta_i^{(k)} \Delta_j^{(k)} \quad \Delta_i^{(k)} \equiv T_i^{(k)} - T_i$$

N: normalisation factor since in general not all nuisance parameters are orthogonal

Juan Rojo

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Most global PDF fits are based on the minimisation of a figure of merit of the form:

$$\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i} \right) \left(\text{cov}^{(\text{exp})} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)$$

Figure 1 one has figure and theory errors are independent and Gaussian, one has

$$\chi^2 = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(D_i - T_i \right) \left(\text{cov}^{(\text{exp})} + \frac{\text{cov}^{(\text{th})}}{ij} \right)_{ij}^{-1} \left(D_j - T_j \right)$$
Ball, Deshpande 18

Accounting for the theory covariance matrix in general will **modify the relative weight** that each of the datasets carries in the global fit: processes with higher MHOUs will be ``**deweighted**"

Case study: nuclear uncertainties

Global fits include DIS and DY data involving **heavy nuclear targets**: assess impact of **theory uncertainties from nuclear effects** in a global PDF fit

$$\operatorname{cov}^{(\operatorname{th})}_{ij} = \frac{1}{N} \sum_{k} \Delta_{i}^{(k)} \Delta_{j}^{(k)} \quad \Delta_{i}^{(k)} \equiv T_{i} \left[f_{N}^{(k)} \right] - T_{i} \left[f_{p} \right]$$

where nuisance parameters computed from results of nuclear PDF fits $\{f_N^{(k)}\}$

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Several prescriptions possible. The simplest one is the **3pt prescription**, giving

$$\operatorname{cov}_{ij}^{(\text{th})} = \frac{1}{2} \left(\Delta_i(+,+) \Delta_j(+,+) + \Delta_i(-,-) \Delta_j(-,-) \right)$$
$$\Delta_i(+,+) \equiv \sigma_i(\mu_R = 2Q, \mu_F = 2Q) - \sigma_i(\mu_R = Q, \mu_F = Q)$$
$$\Delta_i(-,-) \equiv \sigma_i(\mu_R = Q/2, \mu_F = Q/2) - \sigma_i(\mu_R = Q, \mu_F = Q)$$

for two points within the same process (say DIS), and for points from different processes:

$$\operatorname{cov}_{ij}^{(\text{th})} = \frac{1}{4} \left[\left(\Delta_i(+,+) + \Delta_i(-,-) \right) \left(\Delta_j(+,+) + \Delta_j(-,-) \right) \right]$$

 μ_F variations correlated among processes, μ_R variations only within same process

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Juan Rojo

PDF4LHC meeting, 13/12/2018

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

$$\begin{aligned} \operatorname{cov}_{ij}^{(\text{th})} &= \frac{1}{3} \Big(\Delta_i(+,0) \Delta_j(+,0) + \Delta_i(-,0) \Delta_j(-,0) + \Delta_i(0,+) \Delta_j(0,+) \\ &+ \Delta_i(0,-) \Delta_j(0,-) + \Delta_i(+,+) \Delta_j(+,+) + \Delta_i(-,-) \Delta_j(-,-) \Big) \end{aligned}$$

Validating scale variations (I)

Systematic validation of the NLO theory covariance matrix on the `exact' result, the **NNLO-NLO shift**, with the **O(4000) data points** of the global fit

Theory-induced correlations

covariance matrix is block-diagonal for each independent experiment

Theory-induced correlations

1.00 Experiment + theory correlation matrix for 5 points NMC 0.75 SLAC BCDMS 0.50 CHORUS 0.25 NTVDMN 0.00 HERACOMB -0.25 HERAFICHARM -0.50 ATLAS CMS -0.75 CDF HERAF280000 ATLAS LHCb HERACOMB CHORUS NTVDMN CMS BCDMS OFFCD NMEAC

Theory-induced correlations between different experiments *e.g.* DIS and LHC

PDF4LHC meeting, 13/12/2018

-1.00

Theory-induced correlations

1.00 Experiment + theory correlation matrix for 9 points NMC 0.75 SLAC BCDMS 0.50 CHORUS 0.25 NTVDMN 0.00 HERACOMB -0.25HERFEBSHABM -0.50ATLAS CMS -0.75CDF LHCb HERAF28014000 ATUAS HERACOMB CHORUS NTVOMN BCDMS NAGAC CMS OPECO 18 -1.00

Theory-induced correlations between different experiments e.g. DIS and LHC

How we can determine which point prescription reproduces better the scale-induced correlations?

Juan Rojo

PDF4LHC meeting, 13/12/2018

Validating scale variations (II)

- The theory covariance matrix is symmetric, semi-positive definite: eigenvalues >0 or =0
- We can validate it in terms of the NNLO-NLO shift vector as follows. First diagonalise cov_{th} and determine its N_s non-zero eigenvalues t_a and eigenvectors v_i^a
- Then project the shift vector onto these eigenvectors

$$\delta_a = \sum_{a=1}^{N_s} \delta_i v_i^a \qquad \delta_i = T_i^{(\text{nnlo})} - T_i^{(\text{nlo})} \text{ (fixed PDF)}$$

 \therefore A successful prescription for the theory covmat should lead to a **theory** χ^2 of O(1)

$$\chi_{\rm th}^2 = \frac{1}{N_s} \sum_{a=1}^{N_s} \frac{\delta_a^2}{t_a^2}$$

Solution Moreover the *missing* component of the projected shift vector should be small

$$\boldsymbol{\delta_i^{\text{miss}}} \equiv \boldsymbol{\delta_i} - \sum_{a=1}^{N_s} \boldsymbol{\delta_a} \boldsymbol{v_i^a}$$

Juan Rojo

Validating scale variations (II)

	δ	$\frac{m_{1SS}}{\delta}$	nax	χ_{1}^{2}
Dataset	cutoff	i ^{ro} i		≁tn
NMCPD	4.74E-08	0.200	4	0.92677
NMC	5.51E-06	0.219	5	3.206
SLACP	4.24E-06	0.078	2	1.2243
SLACD	4.67E-06	0.083	2	1.30069
BCDMSP	1.26E-04	0.272	4	0.83733
BCDMSD	9.90E-05	0.287	4	0.89951
NTVNUDMN	5.18E-05	0.087	4	0.64357
NTVNBDMN	9.25E-05	0.070	3	0.72287
CHORUSNU	4.17E-05	0.180	4	2.5415
CHORUSNB	1.56E-04	0.293	4	0.25108
HERAF2CHARM	2.62E-04	0.132	4	5.65574
HERACOMBNCEM	1.31E-05	0.362	5	1.12059
HERACOMBNCEP460	2.18E-04	0.383	4	0.027879
HERACOMBNCEP575	2.99E-04	0.362	4	0.01798
HERACOMBNCEP820	1.01E-04	0.178	4	0.10718
HERACOMBNCEP920	3.37E-04	0.494	4	0.02354
HERACOMBCCEM	9.68E-07	0.272	4	5.5865
HERACOMBCCEP	5.75E-07	0.346	4	4.84705
ATLASWZRAP36PB	4.61E-06	0.054	3	0.616316
ATLASZHIGHMASS49FB	2.89E-07	0.011	2	0.3839
ATLASLOMASSDY11EXT	8 largest evals	0.000	4	2.435099
ATLASWZRAP11	4.10E-06	0.052	3	0.67529
ATLAS1JET11	1.12E-05	0.020	3	0.38025
ATLASZPT8TEVMDIST	8 largest evals	0.019	8	8.399
ATLASZPT8TEVYDIST	8 largest evals	0.017	8	2.29223
ATLASTTBARTOT	8 largest evals	0.000	3	0.117724
ATLASTOPDIFF8TEVTRAPNORM	1.06E-06	0.036	3	0.137432
CMSWEASY840PB	5.13E-08	0.011	4	10.7403
CMSWMASY47FB	1.47E-08	0.017	4	13.85255
CMSDY2D11	4.17E-05	0.066	3	0.9457
CMSTTBARTOT	8 largest evals	0.000	3	0.118276
CMSTOPDIFF8TEVTTRAPNORM	4.37E-08	0.306	3	0.24383
LHCBZ940PB	1.43E-06	0.014	3	0.2396
LHCBZEE2FB	3.13E-06	0.014	3	0.29634
CDFZRAP	1.86E-06	0.152	3	0.6539
CDFR2KT	5.68E-05	0.070	3	0.3905
DOZRAP	1.04E-07	0.350	4	4.126
DOWEASY	9.23E-07	0.092	2	0.612
DOMASY	9.76E-07	0.096	2	0.59032

- Correlations within experiments with the
 9pt point prescriptions for cov_{th}
- \mathbf{V} The theory \mathbf{X}^2 should be O(1)

$$\chi_{\rm th}^2 = \frac{1}{N_s} \sum_{a=1}^{N_s} \frac{\delta_a^2}{t_a^2}$$

 \overrightarrow{o} The missing shift vector should be small $\delta_i^{\text{miss}} \equiv \delta_i - \sum_{a=1}^{N_s} \delta_a v_i^a$

Mathebra Additional validation: able to **reproduce sign** of up to 67% of the entries of the shift matrix $\delta_i \delta_j$

Validating scale variations (II)

Dataset	cutoff	$\delta_i^{\text{miss}}/\delta_i^{\text{miss}}$	max	$\chi^2_{ m th}$
NMCPD	4.74E-	08 0.200	4	0.92677
NMC	5.51E-	06 0.219	5	3.206
SLACP	4.24E-	06 0.078	2	1.2243
SLACD	4.67E-	06 0.083	2	1.30069
BCDMSP	1.26E-	04 0.272	4	0.83733
BCDMSD	9.90E-	05 0.287	4	0.89951
NTVNUDMN	5.18E-	05 0.087	4	0.64357
NTVNBDMN	9.25E-	05 0.070	3	0.72287
CHORUSNU	4.17E-	05 0.180	4	2.5415
CHORUSNB	1.56E-	04 0.293	4	0.25108
HERAF2CHARM	2.62E-	04 0.132	4	5.65574
HERACOMBNCEM	1.31E-	05 0.362	5	1.12059

HE

H H H H A

AT AT

AT AT

- Correlations within experiments with the 9pt point prescriptions for *cov*_{th}
- \mathbf{V} The theory \mathbf{X}^2 should be O(1)

The theory covariance matrix constructed this way **successfully validated** on both the diagonal elements and the correlations of the **NLO=>NNLO shift matrix** (``exact" result)

AT				
ATLASZPT8TEVYDIST	8 largest evals	0.017	8	2.29223
ATLASTTBARTOT	8 largest evals	0.000	3	0.117724
ATLASTOPDIFF8TEVTRAPNORM	1.06E-06	0.036	3	0.137432
CMSWEASY840PB	5.13E-08	0.011	4	10.7403
CMSWMASY47FB	1.47E-08	0.017	4	13.85255
CMSDY2D11	4.17E-05	0.066	3	0.9457
CMSTTBARTOT	8 largest evals	0.000	3	0.118276
CMSTOPDIFF8TEVTTRAPNORM	4.37E-08	0.306	3	0.24383
LHCBZ940PB	1.43E-06	0.014	3	0.2396
LHCBZEE2FB	3.13E-06	0.014	3	0.29634
CDFZRAP	1.86E-06	0.152	3	0.6539
CDFR2KT	5.68E-05	0.070	3	0.3905
D0ZRAP	1.04E-07	0.350	4	4.126
DOWEASY	9.23E-07	0.092	2	0.612
DOMASY	9.76E-07	0.096	2	0.59032

$$\delta_i^{\text{miss}} \equiv \delta_i - \sum_{a=1}^s \delta_a v_i^a$$

Additional validation: able to reproduce sign of up to 67% of the entries of the shift matrix δ_iδ_j

Summary and outlook

- Systematically quantifying the **impact of MHOUs in global PDF fits** is an important ingredient for the precision phenomenology program at the LHC
- We have developed a novel approach to estimate MHOUs in PDF fits: to carry out fits with a theory covariance matrix.
- This approach can be validated both with the exact NLO=>NNLO shift and with PDF fits produced with scale-varied theories
- Approach can be applied to **other theory uncertainties** e.g. nuclear corrections.
- The theory covariance matrix has been validated at NLO with the exact result (the NNLO-NLO shift matrix) both for the diagonal and the off-diagonal elements

NNPDF fits accounting for MHOUs in the global dataset around the corner!

Summary and outlook

Summary and outlook

Extra Material

Theory uncertainties from MHOs

At any finite order, perturbative QCD calculations depend on the unphysical **renormalisation** and **factorisation scales**

$$\sigma(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) = \sum_{k=0}^{n} \sum_{i,j}^{n_{f}} \alpha_{s}^{p+k}(\boldsymbol{\mu}_{R}) \,\widetilde{\sigma}^{(k)}(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) \otimes q_{i}(\boldsymbol{\mu}_{F}) \otimes q_{j}(\boldsymbol{\mu}_{F}) + \mathcal{O}\left(\alpha_{s}^{p+n+1}\right)$$

In PDF fits, both scales are set to a given fixed value, the typical **momentum transfer of the process** *Q*, and MHOUs are neglected

$$\sigma(\mu_{\mathbb{R}} = Q, \mu_{\mathbb{F}} = Q) = \sum_{k=0}^{n} \sum_{i,j}^{n_{f}} \alpha_{s}^{p+k}(Q) \,\widetilde{\sigma}^{(k)}(Q) \otimes q_{i}(Q) \otimes q_{j}(Q)$$

At order N^kLO, the scale dependence of physical cross-sections is expressed in terms the N^{k-1}LO splitting functions and partonic cross-sections by imposing:

$$\sigma(\boldsymbol{\mu}_{R}, \boldsymbol{\mu}_{F}) = \sigma(\boldsymbol{Q}, \boldsymbol{Q}) + \mathcal{O}\left(\boldsymbol{\alpha}_{s}^{p+k+1}\right)$$

Theory uncertainties from MHOs

At any finite order, perturbative QCD calculations depend on the unphysical **renormalisation** and **factorisation scales**

$$\sigma(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) = \sum_{k=0}^{n} \sum_{i,j}^{n_{f}} \alpha_{s}^{p+k}(\boldsymbol{\mu}_{R}) \,\widetilde{\sigma}^{(k)}(\boldsymbol{\mu}_{R},\boldsymbol{\mu}_{F}) \otimes q_{i}(\boldsymbol{\mu}_{F}) \otimes q_{j}(\boldsymbol{\mu}_{F}) + \mathcal{O}\left(\alpha_{s}^{p+n+1}\right)$$

In PDF fits, both scales are set to a given fixed value, the typical **momentum transfer of the process** *Q*, and MHOUs are neglected

$$\sigma(\mu_{\mathbb{R}} = Q, \mu_{\mathbb{F}} = Q) = \sum_{k=0}^{n} \sum_{i,j}^{n_{f}} \alpha_{s}^{p+k}(Q) \,\widetilde{\sigma}^{(k)}(Q) \otimes q_{i}(Q) \otimes q_{j}(Q)$$

Scale-dependent terms at N^kLO predicted from N^{k-1}LO results: varying μ_R and μ_F within a certain range provides an estimate of MHOUs

$$\Delta_{\text{MHO}}^{(\text{max})} \sigma \equiv \max\left((\sigma(\mu_R^{(1)}, \mu_F^{(1)}) - \sigma(Q, Q)), \sigma(\mu_R^{(2)}, \mu_F^{(2)}) - \sigma(Q, Q), \dots\right)$$

MHOUs from scale variations

Scale variations not always **best predictor of MHOs** Is this strategy reliable for the processes **input to the PDF fit?**

PDF uncertainties

PDF uncertainties receive contributions from different sources:

Theory uncertainties on PDFs from **Missing Higher Orders** never quantified!