

Parton Distributions with MHO uncertainties

Juan Rojo VU Amsterdam & Nikhef Theory group

PDF4LHC Working Group meeting

CERN, 13/12/2018

Juan Rojo PDF4LHC meeting, 13/12/2018 1

Theory uncertainties from MHOs

Standard global PDF fits are based on **fixed-order QCD calculations**

$$
\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})
$$

The truncation of the perturbative series has associated a theoretical uncertainty known as **Missing Higher Order (MHO)** uncertainty

Theory uncertainties from MHOs

How severe is **ignoring MHOUs** in modern global PDFs fits?

Shift between **NLO and NNLO PDFs** comparable or larger than **PDF errors**

Given the high precision of modern PDF determinations, **accounting for MHOUs** is most urgent!

The strategy

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

$$
\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} (D_{i} - T_{i}) \left(\text{cov}^{(\text{exp})} + \text{cov}^{(\text{th})} \right)_{ij}^{-1} \left(D_{j} - T_{j} \right)
$$

In addition, as a **validation tool**, we also:

Perform **multiple PDF fits** for a range of values of **μ***R* and **μ***^F* MHOUs on the PDFs estimated as the **envelope of fits** with different scales

This exercise is also useful to understand the impact that varying **μ***R* and **μ***F* have on the fitted PDFs (never studied before) C

PDF fits with scale variations

Perform **multiple PDF fits** for a range of values of **μ***R* and **μ***^F* MHOUs on the PDFs estimated as the **envelope of fits** with different scales

Require assumptions about the theory-induced correlations between different processes, e.g. between DIS and jet production

PDF fits with scale variations

Perform **multiple PDF fits** for a range of values of **μ***R* and **μ***^F* MHOUs on the PDFs estimated as the **envelope of fits** with different scales

- The scale-variation envelope works fine in most cases (too conservative at small-*x*?)
- **CPU-intensive** and cumbersome for general LHC applications
- Keep track of scale correlations **between input PDFs** and **produced LHC processes**

PDF fits with scale variations

Perform **multiple PDF fits** for a range of values of **μ***R* and **μ***^F* MHOUs on the PDFs estimated as the **envelope of fits** with different scales

MHOUs on PDFs decrease when going **from NLO to NNLO theory,** as expected

MHOUs most relevant when PDF uncertainties are smallest, e.g. at medium-*x*

The role of correlations

MHOUs are **fully correlated uncertainties** (no statistical component): Can lead to large changes in PDF central values with small changes in **χ***²*

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Most global PDF fits are based on the minimisation of a figure of merit of the form:

$$
\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} (D_{i} - T_{i}) (\text{cov}^{(\text{exp})})_{ij}^{-1} (D_{j} - T_{j})
$$

If experimental and theory errors are **independent** and **Gaussian**, one has

$$
\chi^2 = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} (D_i - T_i) \left(\text{cov}^{(\text{exp})} + \text{cov}^{(\text{th})} \right)_{ij}^{-1} \left(D_j - T_j \right)
$$
\nBall, Deshpande 18

The **theory covariance matrix** can be computed in terms of **nuisance parameters**

$$
\text{cov}^{(\text{th})}_{ij} = \frac{1}{N} \sum_{k} \Delta_i^{(k)} \Delta_j^{(k)} \quad \Delta_i^{(k)} \equiv T_i^{(k)} - T_i
$$

N: normalisation factor since in general not all nuisance parameters are orthogonal

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Most global PDF fits are based on the minimisation of a figure of merit of the form:

$$
\chi^{2} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} (D_{i} - T_{i}) \left(\text{cov}^{(\text{exp})}\right)_{ij}^{-1} \left(D_{j} - T_{j}\right)
$$

If experimental and theory errors are **independent** and **Gaussian**, one has

$$
\chi^2 = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} (D_i - T_i) \left(\text{cov}^{(\text{exp})} + \text{cov}^{(\text{th})} \right)_{ij}^{-1} \left(D_j - T_j \right)
$$
\nBall, Deshpande 18

relative weight *that each of the datasets carries in the global fit: Accounting for the theory covariance matrix in general will modify the processes with higher MHOUs will be ``deweighted''*

Case study: nuclear uncertainties

Global fits include DIS and DY data involving **heavy nuclear targets:** assess impact of **theory uncertainties from nuclear effects** in a global PDF fit

$$
\text{cov}^{(\text{th})}_{ij} = \frac{1}{N} \sum_{k} \Delta_i^{(k)} \Delta_j^{(k)} \quad \Delta_i^{(k)} \equiv T_i \left[f_N^{(k)} \right] - T_i \left[f_p \right]
$$

where nuisance parameters computed from results of **nuclear PDF fits** { $f_N(k)$ }

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Several prescriptions possible. The simplest one is the **3pt prescription,** giving

$$
cov_{ij}^{(th)} = \frac{1}{2} \left(\Delta_i(+, +) \Delta_j(+, +) + \Delta_i(-, -) \Delta_j(-, -) \right)
$$

$$
\Delta_i(+, +) \equiv \sigma_i(\mu_R = 2Q, \mu_F = 2Q) - \sigma_i(\mu_R = Q, \mu_F = Q)
$$

$$
\Delta_i(-, -) \equiv \sigma_i(\mu_R = Q/2, \mu_F = Q/2) - \sigma_i(\mu_R = Q, \mu_F = Q)
$$

for two points within the same process (say DIS), and for points from different processes:

$$
cov_{ij}^{(th)} = \frac{1}{4} \left[\left(\Delta_i(+, +) + \Delta_i(-, -) \right) \left(\Delta_j(+, +) + \Delta_j(-, -) \right) \right]
$$

μ*F* variations correlated among processes, **μ***R* variations only within same process

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

Construct a **theory covariance matrix** from **scale-varied cross-sections** and combine it with the experimental covariance matrix

$$
cov_{ij}^{(th)} = \frac{1}{3} \Big(\Delta_i(+,0) \Delta_j(+,0) + \Delta_i(-,0) \Delta_j(-,0) + \Delta_i(0,+) \Delta_j(0,+) + \Delta_i(0,-) \Delta_j(0,-) + \Delta_i(+,+) \Delta_j(+,+) + \Delta_i(-,-) \Delta_j(-,-) \Big)
$$

Validating scale variations (I)

Systematic validation of the NLO theory covariance matrix on the `exact' result, the **NNLO-NLO shift**, with the **O(4000) data points** of the global fit

Theory-induced correlations

1.00 **Experiment correlation matrix NMC** -0.75 **SLAC BCDMS** 0.50 **CHORUS** 0.25 **NTVDMN** 0.00 **HERACOMB** -0.25 HERA536HABN -0.50 **ATLAS CMS** -0.75 **CDF** HERAFZEOMAOMO ATLAS LHCL HERACOMB CHORUS **AITVOMN BCDMS** NASCAC CMS coffice 16 -1.00 **Juan Rojo PDF4LHC meeting, 13/12/2018**

The experimental covariance matrix is **block-diagonal** for each independent experiment

Theory-induced correlations

 -1.00 Experiment + theory correlation matrix for 5 points **NMC** -0.75 **SLAC BCDMS** 0.50 **CHORUS** -0.25 **NTVDMN** $0.00 -$ **HERACOMB** -0.25 HERA536448M -0.50 **ATLAS** CMS -0.75 CDF HERAFZEOMPOMO ATLAS LHCb HERACOMB **AITVOMN** CMS CHORUS BCDMS opfico NASCAC

Theory-induced correlations between different experiments *e.g*. DIS and LHC

Juan Rojo PDF4LHC meeting, 13/12/2018

 -1.00

Theory-induced correlations

1.00 Experiment + theory correlation matrix for 9 points **NMC** -0.75 **SLAC BCDMS** 0.50 **CHORUS** 0.25 **NTVDMN** 0.00 **HERACOMB** -0.25 HERA536HABM -0.50 **ATLAS CMS** -0.75 CDF LHCb HERAFZEOMPROMO ATLAS HERACOMB CHORUS **AITVOMN** CMS BCDMS NASCAC costco

Theory-induced correlations between different experiments *e.g*. DIS and LHC

How we can determine which point prescription reproduces better the scale-induced correlations?

18

Juan Rojo PDF4LHC meeting, 13/12/2018

 -1.00

Validating scale variations (II)

- The theory covariance matrix is **symmetric, semi-positive definite**: eigenvalues >0 or =0
- We can validate it in terms of the NNLO-NLO shift vector as follows. First diagonalise *covth* and determine its *Ns* non-zero eigenvalues *ta* and eigenvectors *vi a*
- Then **project the shift vector** onto these eigenvectors

$$
\delta_a = \sum_{a=1}^{N_s} \delta_i v_i^a \qquad \delta_i = T_i^{(\text{nnlo})} - T_i^{(\text{nlo})} \text{ (fixed PDF)}
$$

A successful prescription for the theory covmat should lead to a **theory χ***2* of *O(1)*

$$
\chi_{\text{th}}^2 = \frac{1}{N_s} \sum_{a=1}^{N_s} \frac{\delta_a^2}{t_a^2}
$$

Moreover the *missing* component of the projected shift vector should be small

$$
\delta_i^{\text{miss}} \equiv \delta_i - \sum_{a=1}^{N_s} \delta_a v_i^a
$$

Validating scale variations (II)

- Correlations within experiments with the **9pt point prescriptions** for *covth*
- The theory **χ***2* should be *O(1)*

$$
\chi_{\text{th}}^2 = \frac{1}{N_s} \sum_{a=1}^{N_s} \frac{\delta_a^2}{t_a^2}
$$

 $\delta_i^{\text{miss}} \equiv \delta_i$ – *Ns* \sum $\delta_a v_i^a$ $a=1$ The missing shift vector should be small

M Additional validation: able to **reproduce sign** of up to 67% of the entries of the shift matrix $\delta_i \delta_j$

Validating scale variations (II)

HE HE

A A A H H H H

AT
AT

Correlations within experiments with the **9pt point prescriptions** for *covth*

Ns

 δ_a^2 *a*

∑

The theory **χ***2* should be *O(1)*

1

*χ*2

 $\frac{2}{\pi}$

a=1 **NLO=>NNLO shift matrix** (``exact" result) The theory covariance matrix constructed this way **successfully validated** on both the diagonal elements and the correlations of the

$$
\delta_i^{\text{miss}} \equiv \delta_i - \sum_{a=1}^{N_s} \delta_a v_i^a
$$

M Additional validation: able to **reproduce sign** of up to 67% of the entries of the shift matrix $\delta_i\delta_j$

Summary and outlook

- Systematically quantifying the **impact of MHOUs in global PDF fits** is an important ingredient for the precision phenomenology program at the LHC
- We have developed a novel approach to estimate MHOUs in PDF fits: to carry out **fits with a theory covariance matrix.**
- This approach can be validated both with the **exact NLO=>NNLO shift** and with PDF fits produced with **scale-varied theories**
- Approach can be applied to **other theory uncertainties** e.g. nuclear corrections.
- The theory covariance matrix has been **validated at NLO with the exact result** (the NNLO-NLO shift matrix) both for the diagonal and the off-diagonal elements

NNPDF fits accounting for MHOUs in the global dataset around the corner!

Summary and outlook

Summary and outlook

Extra Material

Theory uncertainties from MHOs

At any finite order, perturbative QCD calculations depend on the unphysical **renormalisation** and **factorisation scales**

$$
\sigma(\mu_R, \mu_F) = \sum_{k=0}^n \sum_{i,j}^{n_f} \alpha_s^{p+k}(\mu_R) \widetilde{\sigma}^{(k)}(\mu_R, \mu_F) \otimes q_i(\mu_F) \otimes q_j(\mu_F) + \mathcal{O}\left(\alpha_s^{p+n+1}\right)
$$

In PDF fits, both scales are set to a given fixed value, the typical **momentum transfer of the process** *Q,* and MHOUs are neglected

$$
\sigma(\mu_R = Q, \mu_F = Q) = \sum_{k=0}^{n} \sum_{i,j}^{n_f} \alpha_s^{p+k}(Q) \widetilde{\sigma}^{(k)}(Q) \otimes q_i(Q) \otimes q_j(Q)
$$

At order **NkLO**, the scale dependence of physical cross-sections is expressed in terms the **Nk-1LO** splitting functions and partonic cross-sections by imposing:

$$
\sigma(\mu_R, \mu_F) = \sigma(Q, Q) + \mathcal{O}\left(\alpha_s^{p+k+1}\right)
$$

Theory uncertainties from MHOs

At any finite order, perturbative QCD calculations depend on the unphysical **renormalisation** and **factorisation scales**

$$
\sigma(\mu_R, \mu_F) = \sum_{k=0}^n \sum_{i,j}^{n_f} \alpha_s^{p+k}(\mu_R) \widetilde{\sigma}^{(k)}(\mu_R, \mu_F) \otimes q_i(\mu_F) \otimes q_j(\mu_F) + \mathcal{O}\left(\alpha_s^{p+n+1}\right)
$$

In PDF fits, both scales are set to a given fixed value, the typical **momentum transfer of the process** *Q,* and MHOUs are neglected

$$
\sigma(\mu_R = Q, \mu_F = Q) = \sum_{k=0}^{n} \sum_{i,j}^{n_f} \alpha_s^{p+k}(Q) \widetilde{\sigma}^{(k)}(Q) \otimes q_i(Q) \otimes q_j(Q)
$$

Scale-dependent terms at **NkLO** predicted from **Nk-1LO** results: varying **μ***R* and **μ***F* within a certain range provides an estimate of MHOUs

$$
\Delta_{\text{MHO}}^{(\text{max})}\sigma \equiv \max\left((\sigma(\mu_R^{(1)}, \mu_F^{(1)}) - \sigma(Q, Q)), \sigma(\mu_R^{(2)}, \mu_F^{(2)}) - \sigma(Q, Q), \dots\right)
$$

MHOUs from scale variations

Scale variations not always **best predictor of MHOs** Is this strategy reliable for the processes **input to the PDF fit?**

PDF uncertainties

PDF uncertainties receive contributions from **different sources**:

Theory uncertainties on PDFs from **Missing Higher Orders** never quantified!