

Testing PDFs in a spectator model DIS with Target Mass Corrections

Juan Guerrero Hampton University & Jefferson Lab

CTEQ Meeting 2018, Jefferson Lab November, 2018

Accessing PDFs: Global analysis

Hard scattering reactions: Picture of the nucleons (partons) Examples:

• Deep Inelastic Scattering (DIS): $e^- + p \rightarrow e^- + X$

Fragmentation Function (FF)

Hadron Mass Effects

Let's consider an example for Pion Mass effects at JLab.

Accardi et al JHEP 0911, 084 (2009)

 $\frac{1 + \delta^{exp} \sigma / \sigma^{exp}}{1 + \delta^{HMC} \sigma / \sigma^{exp}}$

0.8

 $m_{\pi} \sim 0.14 \text{ GeV}$

0.6

 z_h

Integrated Kaon Multiplicities: SIDIS on Deuteron

Where does this discrepancy come from? Is it real or apparent?

Direct Data Comparison: K⁺/K⁻

$$r_{\rm exp} = \left(\frac{M^{K^+}}{M^{K^-}}\right)_{\rm exp}$$

Guerrero, Accardi PRD 97 (2018) 114012

• COMPASS:
$$r_{\exp}^{(0)} \equiv r_{\exp} \times R_{HMC} \times R_{evo}^{H \to C}$$

• HERMES:
$$r_{exp}^{(0)} \equiv r_{exp} \times R_{HMC}$$

Original data

⊌HERMES & COMPASS fully compatible after removing HMCs.

Collinear factorization with masses in a spectator model

Factorization:

[©] "controllable" approximation

Extend range of validity of factorization/ construct new factorization theorems

Overall goal: Extend HMC formalism to NLO

- **Step 1**: test validity of the approach with Yukawa model
 - Kinematical approx. & factorization scheme vs. full calculation
 - Generate pseudo-data => Fitted PDFs vs. calculated PDFs (In progress with G. Alcala, U. Simon Bolivar, Caracas, Venezuela)
- Step 2: Include fragmentation
 - SIA: 3 body phase space
 - SIDIS: coupled final state and initial state kinematics

SIA:

Inclusive DIS in an spectator model

DIS in the spectator model

Gauge invariance requires to consider

Moffat et al, PRD 95 (2017) 096008

See Eric's talk, Friday 8:30

Collinear Factorization for DIS diagram

$$F_1(x_B, Q^2) \approx (2\pi) \,\delta(x - \bar{x}) \otimes \varphi_q(x)$$

depends on the kinematical approximations

Hard scattering: 4-momentum conservation at LO

Kinematic approximations:

Averages definitions

Full process:

$$\langle \mathcal{O} \rangle (x_B, Q^2) = \frac{\int dk_T^2 \mathcal{O}(x_B, Q^2, k_T) \mathcal{F}_1(x_B, Q^2, k_T)}{\int dk_T^2 \mathcal{F}_1(x_B, Q^2, k_T)}$$

Factorized process PDF:

$$\langle \mathcal{O} \rangle_{\text{PDF}}(x, Q^2) = \frac{\int dk_T^2 \mathcal{O}(x, Q^2, k_T) \varphi_q(x, Q^2, k_T)}{\int dk_T^2 \varphi_q(x, Q^2, k_T)}$$

Light cone fraction x: average and comparison

Structure Function

Highlights:

- x=ξ stabilize the solution for x_B ~ 0.2-0.6 (similar slope to exact F₁)
- $= x = \xi_q$ closest stable solution (similar slope to exact F_1)
- Remaining gap: Higher-twist corrections?

 $Q^{2} = 4 \,\text{GeV}^{2}$ $m_{q} = 0.3 \,\text{GeV}$ $m_{\phi} = 0.822 \,\text{GeV}$ $\Lambda = 0.609 \,\text{GeV}$

Average virtuality

Average "light-coneness"

Conclusion

Use spectator model to study several kinematic approximations in DIS.

- ▶ $x = x_B$ (neglect all masses)
- ▶ x=ξ (keep target mass)
- ▶ $x = \xi_q$ (target and final state quark mass)

Use averages to estimate how much of the target mass effects are captured by each of these approximations:

▶ $x = \xi_q$ captures most of the kinematic effects.

Sompared full F_1 to collinear F_1 : $x = \xi$ and $x = \xi_q$ produce collinear structure functions with the right shape (difference in size maybe due to Higher-Twist contributions).

Outlook:

- TMCs at NLO
- Factorization theorem, universality