Simplified ACOT scheme with Massive Phase Space (S-ACOT-MPS)

Keping Xie

Department of Physics, Southern Methodist University, Dallas, TX 75275-0175

CTEQ Workshop @ JLAB Parton Distributions as a Bridge from Low to High Energies November 10, 2018

Based on the work with J. Campbell (Fermilab) and P. Nadolsky (SMU) 18xx xxxxx

What is S-ACOT-MPS?

Simplified-ACOT scheme with Massive Phase Space:

A QCD factorization approach for heavy-quark scattering at hadron-hadron colliders at (N)NLO in $\alpha_{\rm s}$.

Heavy-Flavor Production in DIS

Figure: Expected uncertainty of Fixed Flavor Number Scheme for the Heavy-Flavor structure function in DIS T. Tung et. al. JPG2002.

- $Q \geq m_{\Omega}$, m_{Ω} matters, $Q(x, \mu) \approx 0$, Flavor Creation (N_f scheme).
- \bullet Q \gg m_Q, m_Q \approx 0, Q(x, μ) matters, Flavor Excitation (N_f + 1 scheme).

Aivazis-Collins-Olness-Tung **[PRD1994]** introduce an asymptotic subtraction (SB) term to get rid of the double-counting between Flavor Creation and Flavor Excitation, which switches from N_f to N_f+1 scheme (Variable Flavor Number Scheme).

$$
FC + FE - SB
$$
 (1)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君

- $\bullet \ \mathrm{Q} \gtrsim \mathrm{m_O}$, SB \simeq FE, return back to $\mathrm{N_f}$ scheme.
- \bullet Q \gg m_Q, SB \simeq FC, switch to N_f + 1 scheme.

Simplified-ACOT scheme [J. Collins PRD1998, M. Kramer et. al. PRD2000] treats heavy-quark as massless in Flavor Excitation. Drawback: instability of the cancellation between SB and FE around the

switching point.

- \bullet The S-ACOT- γ sheme [W. Tung et.al. JPG2002] introduces rescaling variable $\chi = \mathrm{x}(1+4\mathrm{m}_\mathrm{Q}^2/\mathrm{Q}^2)$ to capture the mass threshold effect. It stabilizes the perturbative convergence near the switching point by enforcing energy-momentum conservation in all scattering contributions.
- The S-ACOT-MPS [K. Xie et. al. 18xx.xxxxx] scheme extends the S-ACOT- χ method to hadron-hadron collisions.

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at UA1, D0, CDF, ATLAS, and CMS.

- Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at small-x, because of $\mathrm{x}_{1,2}$ \sim $\frac{\sqrt{m^2+p_T^2}}{\sqrt{s}}e^{\pm y}$ [PROSA arXiv:1503.04581].
- Physical observable: $\rm p_T^Q$ T
	- $\rm p_T^Q \ll m_Q$, $\rm N_f$ Fixed Flavor Number Scheme [P. Nason et. al. NPB1989, W. Beenakker NPB1991],
	- $\rm p_T^Q \gg m_Q$, Zero-Mass Scheme $(N_f\!+\!1)$,
	- $\rm p_T^Q \sim m_Q$, General-Mass Variable Flavor Number Scheme.
- Existing GM-VFNS's for heavy-quark hadroproduction
	- \bullet FONLL [M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
	- GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],
	- \bullet S-ACOT-MPS $K. Xie$ et. al. 18xx.xxxxx].

イロト イ団 トイヨト イヨト 一番

FFNS calculations

In FFNS for b production, we should take $N_f = 4$ in both α_s and PDF running.

- The heavy-quark running in the virtual loops is missing.
- No Flavor Excitation contributions as no heavy-flavor PDF.

If Using $N_f = 5$ PDF in MCFM, MadGraph aMC@NLO, POWHEG,

- \bullet N_f = 5 in the α_s running, e.g. reading directly from LHAPDF;
- No FE contributions, equivalent to $N_f = 4$ in the PDFs.

GM-VFNS's: Adding the Flavor Excitation terms and subtracting the double-counted terms $(FC + FE - SB)$.

Figure: Representative diagrams for Flavor Creation, Flavor Excitation and SuBtraction terms.Thick (thin) lines indicate massive (massless) quark propagators. The dot means convolution.

Ideally, we have

- $\rm p_T^Q \ll m_Q^{},\rm SB \simeq FE$, FC dominates (FFNS),
- $\rm p_T^Q \gg m_Q^{},~SB$ \simeq $\rm FC,~FE$ takes over (ZMS).

Comparisons with 2 existing codes

FONLL resums logarithms as fragmentation functions and subtracts the massless limit of fixed-order where only log terms retained [M. Cacciari et. al.,

hep-ph/9803400, hep-ph/0102134].

$$
FONLL = FO + (RS - FOM0) \times G(m, p_T).
$$
 (2)

The matching function is tuned to keep $\lim_{m/p_T\to 0} G(m,p_T) = 1$. GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

$$
\sigma = FC + FE - \Delta \sigma, \quad \text{where} \quad \lim_{m \to 0} \sigma_m = \sigma_0 + \Delta \sigma. \tag{3}
$$

The subtraction term $\Delta \sigma$ is logarithms, equivalent to FOM0.

S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction term is calculated with the convolution of splitting function [J. Collins PRD1998, M. Kramer et. al. PRD200],

$$
SB = \hat{\sigma}_{gQ} \otimes P_{Q \leftarrow g} \otimes g(x) \tag{4}
$$

We introduce the massive phase space to capture the threshold effect in FE andSB by following the idea S-ACOT- χ scheme_{[\[W.](#page-6-0) T[ung](#page-8-0) [et.](#page-6-0)[al.](#page-7-0) [J](#page-7-0)[P](#page-8-0)[G2](#page-4-0)[002](#page-5-0)][.](#page-9-0)}
Setting the state of the stat

NLO cross section: massless vs. massive phase space.

The matching instability is tamed by the massive phase space. FONLL deals it with a tuned a tuned matching function $G(m, p_T)$ GM–VFNS has to impose a cut $\mathrm{p_T^Q}>\mathrm{m_Q}.$

Figure: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@NLO and FONLL online web. T[h](#page-4-0)[e](#page-5-0) B^{\pm} B^{\pm} B^{\pm} is corrected back to the b[-q](#page-7-0)[uar](#page-9-0)[k](#page-7-0) [wi](#page-8-0)[t](#page-9-0)h [fr](#page-5-0)[a](#page-8-0)[g](#page-9-0)me[n](#page-17-0)[ta](#page-9-0)[tio](#page-0-0)n ratio f(b \rightarrow B^{\pm}) = 0.403 [PDG2016].

<code>S-ACOT-MPS</code> vs. <code>LHCb</code> data: the $\rm p_T^b$ $_{\rm T}^{\rm b}$ distribution

Figure: We choose CT14 PDF. The scale and m_b uncertainties are calculated by varying $\mu_{\rm R}=\mu_{\rm F}=(1/2,1,2)\sqrt{{\rm p}_{\rm T}^2+{\rm m}_{\rm Q}^2}$ and ${\rm m}_{\rm b}=4.75\pm0.25$ GeV. $2Q$ 10 / 18

NLO scale uncertainties are large.

- \bullet α_s(μ _R) is large and varies drastically around μ _R \sim m_O,
- \bullet Heavy-flavor PDF $Q(x,\mu_F)$ starts to be generated perturbatively at $\mu_F = m_O$.

We can introduce the ratio observables ${\rm R_{E_1/E_2}}(X)=\frac{\sigma(X,E_1)}{\sigma(X,E_2)},$ in which theoretical uncertainties cancel significantly [M. Mangano 1206.3557].

Figure: LHCb measurements of D^0 production at 7 TeV [1302.2864], and the cross section ratio $R(13 \text{TeV}/7 \text{TeV})$ of B^{\pm} p_T distribution [1710.04921].

Theoretical uncertainties cancel, especially the scale uncertainty.

Figure: Double differential cross section for 7 TeV. Yellow bands are the total theoretical uncertainties, added in quadrature. Good overall agreement.

Figure: Double differential cross section for 13 TeV.

メロト メタト メミト メミト E つへへ 14 / 18

NLO vs. LHCb data: ratios of double-diff. cross sections

CT14 Hessian profiling with ePump [C. Schmidt et. al. 1806.07950].

<code>LHCbBX(w10)</code>: <code>CT14 PDF</code> updated with wight 1(10) <code>LHCb</code> $\rm B^{\pm}$ data. <code>Caveat:</code> We treat the systematic errors as uncorrelated, since we do not have the full correlated uncertainties.

We observe the impact on gluon PDF, but still mild, because

- CT14 PDF describe the data very well,
- The experimental uncertainties are still large.

PROSA15 PDFs fitting 7 TeV LHCb charm data [1503.04581], compatible with CT14HERA2NLO $N_f = 3$.

Next rounds of LHCb measurements may help constrain the small-x gluon.

つへへ 17 / 18

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

- We develop S-ACOT-MPS scheme calculations to the heavy-flavor hadroproduction.
	- Contributions to inclusive heavy quark from both Flavor Creation and Flavor Excitation;
	- The double-counted term from gluon splitting is subtracted;
	- We introduce massive phase space to capture the threshold effect.
- We obtain good cancellations behaviors in both asymptotic limits:
	- $p_T \ll m_Q$, the SB cancels the FE terms,
	- $p_T \gg m_O$, the SB cancels the FC terms.
- Our calculations agree well with the LHCb $\rm B^\pm$ measurements.
- With theoretical uncertainties cancel significantly, the ratio observables impact the gluon-PDF in the small-x region. The precise data in next rounds can potentially provide strong constraints.
- Implementation in MCFM can be easily extended to NNLO, and applied to other heavy-quark processes, such as $H/V+Q$.