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What is S-ACOT-MPS?
Simplified-ACOT scheme with Massive Phase Space:
A QCD factorization approach for heavy-quark scattering at hadron-hadron
colliders at (N)NLO in αs.
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Heavy-Flavor Production in DIS
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Figure: Expected uncertainty of Fixed Flavor Number Scheme for the Heavy-Flavor
structure function in DIS T. Tung et. al. JPG2002.

Q & mQ, mQ matters, Q(x,µ)≈ 0, Flavor Creation (Nf scheme).
Q�mQ, mQ ≈ 0, Q(x,µ) matters, Flavor Excitation (Nf +1 scheme).

Aivazis-Collins-Olness-Tung [PRD1994] introduce an asymptotic subtraction (SB) term
to get rid of the double-counting between Flavor Creation and Flavor Excitation,
which switches from Nf to Nf +1 scheme (Variable Flavor Number Scheme).

FC+FE−SB (1)
Q & mQ, SB' FE, return back to Nf scheme.
Q�mQ, SB' FC, switch to Nf +1 scheme.
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ACOT series

Simplified-ACOT scheme [J. Collins PRD1998, M. Kramer et. al. PRD2000] treats heavy-quark as
massless in Flavor Excitation.
Drawback: instability of the cancellation between SB and FE around the
switching point.
The S-ACOT-χ sheme [W. Tung et.al. JPG2002] introduces rescaling variable
χ = x(1+4m2

Q/Q2) to capture the mass threshold effect.
It stabilizes the perturbative convergence near the switching point by
enforcing energy-momentum conservation in all scattering contributions.
The S-ACOT-MPS [K. Xie et. al. 18xx.xxxxx] scheme extends the S-ACOT-χ method to
hadron-hadron collisions.
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heavy-quark production at colliders

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at
UA1, D0, CDF, ATLAS, and CMS.

Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at

small-x, because of x1,2 ∼
√

m2+p2
T√

s e±y
[PROSA arXiv:1503.04581].

Physical observable: pQ
T

pQ
T �mQ, Nf Fixed Flavor Number Scheme [P. Nason et. al. NPB1989, W. Beenakker NPB1991],

pQ
T �mQ, Zero-Mass Scheme (Nf +1),

pQ
T ∼mQ, General-Mass Variable Flavor Number Scheme.

Existing GM-VFNS’s for heavy-quark hadroproduction
FONLL [M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],
S-ACOT-MPS [K. Xie et. al. 18xx.xxxxx].
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FFNS calculations

In FFNS for b production, we should take Nf = 4 in both αs and PDF running.
The heavy-quark running in the virtual loops is missing.
No Flavor Excitation contributions as no heavy-flavor PDF.

If Using Nf = 5 PDF in MCFM, MadGraph_aMC@NLO, POWHEG,
Nf = 5 in the αs running, e.g. reading directly from LHAPDF;
No FE contributions, equivalent to Nf = 4 in the PDFs.
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GM-VFNS’s: Adding the Flavor Excitation terms and
subtracting the double-counted terms (FC+FE-SB).

Figure: Representative diagrams for Flavor Creation, Flavor Excitation and SuBtraction
terms.Thick (thin) lines indicate massive (massless) quark propagators. The dot means
convolution.
Ideally, we have

pQ
T �mQ, SB' FE, FC dominates (FFNS),

pQ
T �mQ, SB' FC, FE takes over (ZMS).
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Comparisons with 2 existing codes

FONLL resums logarithms as fragmentation functions and subtracts the
massless limit of fixed-order where only log terms retained [M. Cacciari et. al.,

hep-ph/9803400, hep-ph/0102134].

FONLL = FO+(RS−FOM0)×G(m,pT). (2)

The matching function is tuned to keep limm/pT→0 G(m,pT) = 1.
GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

σ = FC+FE−∆σ , where lim
m→0

σm = σ0 +∆σ . (3)

The subtraction term ∆σ is logarithms, equivalent to FOM0.
S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction
term is calculated with the convolution of splitting function [J. Collins PRD1998, M. Kramer

et. al. PRD200],
SB = σ̂gQ⊗PQ←g⊗g(x) (4)

We introduce the massive phase space to capture the threshold effect in FE
and SB by following the idea S-ACOT-χ scheme[W. Tung et.al. JPG2002].
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NLO cross section: massless vs. massive phase space.
The matching instability is tamed by the massive phase space.
FONLL deals it with a tuned a tuned matching function G(m,pT)

GM-VFNS has to impose a cut pQ
T > mQ.
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Figure: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@NLO
and FONLL online web. The B± is corrected back to the b-quark with fragmentation
ratio f(b→ B±) = 0.403 [PDG2016]. 9 / 18



S-ACOT-MPS vs. LHCb data: the pb
T distribution
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Figure: We choose CT14 PDF. The scale and mb uncertainties are calculated by varying
µR = µF = (1/2,1,2)

√
p2

T +m2
Q and mb = 4.75±0.25 GeV.
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NLO scale uncertainties are large.

αs(µR) is large and varies drastically around µR ∼mQ,
Heavy-flavor PDF Q(x,µF) starts to be generated perturbatively at µF = mQ.

We can introduce the ratio observables RE1/E2(X) = σ(X,E1)
σ(X,E2)

, in which theoretical
uncertainties cancel significantly [M. Mangano 1206.3557].
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Figure: LHCb measurements of D0 production at 7 TeV [1302.2864], and the cross section
ratio R(13TeV/7TeV) of B± pT distribution [1710.04921].
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S-ACOT-MPS vs. LHCb data: the ratio R(13TeV/7TeV)

Theoretical uncertainties cancel, especially the scale uncertainty.
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NLO vs. LHCb data: double-differential cross section
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Figure: Double differential cross section for 7 TeV. Yellow bands are the total theoretical
uncertainties, added in quadrature. Good overall agreement.
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13 TeV case
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Figure: Double differential cross section for 13 TeV.
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NLO vs. LHCb data: ratios of double-diff. cross sections
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CT14 Hessian profiling with ePump [C. Schmidt et. al. 1806.07950].

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B± data. Caveat:
We treat the systematic errors as uncorrelated, since we do not have the full
correlated uncertainties.
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We observe the impact on gluon PDF, but still mild, because
CT14 PDF describe the data very well,
The experimental uncertainties are still large.
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PROSA15 PDFs fitting 7 TeV LHCb charm data [1503.04581],
compatible with CT14HERA2NLO Nf = 3.

Next rounds of LHCb measurements may help constrain the small-x gluon.
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Summary

We develop S-ACOT-MPS scheme calculations to the heavy-flavor
hadroproduction.

Contributions to inclusive heavy quark from both Flavor Creation and Flavor
Excitation;
The double-counted term from gluon splitting is subtracted;
We introduce massive phase space to capture the threshold effect.

We obtain good cancellations behaviors in both asymptotic limits:
pT�mQ, the SB cancels the FE terms,
pT�mQ, the SB cancels the FC terms.

Our calculations agree well with the LHCb B± measurements.
With theoretical uncertainties cancel significantly, the ratio observables
impact the gluon-PDF in the small-x region. The precise data in next rounds
can potentially provide strong constraints.
Implementation in MCFM can be easily extended to NNLO, and applied to
other heavy-quark processes, such as H/V+Q.
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