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What is S-ACOT-MPS?

Simplified-ACOT scheme with Massive Phase Space:
A QCD factorization approach for heavy-quark scattering at hadron-hadron
colliders at (N)NLO in as.
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Heavy-Flavor Production in DIS
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Figure: Expected uncertainty of Fixed Flavor Number Scheme for the Heavy-Flavor
structure function in DIS 7. tung et. al. JpG2002.

° Q2 mq, mqg matters, Q(x,u) ~ 0, Flavor Creation (N¢ scheme).

° Q> mgq, mq~0, Q(x,u) matters, Flavor Excitation (N¢+ 1 scheme).
Aivazis-Collins-Olness-Tung rowos introduce an asymptotic subtraction (SB) term
to get rid of the double-counting between Flavor Creation and Flavor Excitation,
which switches from N to N¢+ 1 scheme (Variable Flavor Number Scheme).

FC+FE—SB (1)

® Q2 mq, SB~FE, return back to N¢ scheme.
® Q> mq, SB~FC, switch to N¢+1 scheme.

3/18



ACOT series

] Simplified—ACOT scheme (. coliins PRD1998, M. Kramer et. al. PRD2000] treats heavy—quark as
massless in Flavor Excitation.
Drawback: instability of the cancellation between SB and FE around the

switching point.

@ The S-ACOT-x sheme w. tung eta. pea002) introduces rescaling variable
x =x(1+4mg/Q?) to capture the mass threshold effect.
It stabilizes the perturbative convergence near the switching point by
enforcing energy-momentum conservation in all scattering contributions.

@ The S-ACOT-MPS [« xic et al. 18000000 SCheme extends the S-ACOT-) method to
hadron-hadron collisions.
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heavy-quark production at colliders

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at
UA1, DO, CDF, ATLAS, and CMS.

@ Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at

o 2

m2+p,2r +
small—x, because of X1,2 ~ Te Y [PROSA arXiv:1503.04581] .

@ Physical observable: p%

° p% < mq, N Fixed Flavor Number Scheme (p. Noson et. al. NPB1989, W. Becnakker NPB1901],

° pr% > mgq, Zero-Mass Scheme (N¢+ 1),
° p,(% ~mq, General-Mass Variable Flavor Number Scheme.
o Existing GM-VFNS's for heavy-quark hadroproduction

@ FONLL M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
o GM-VFNS code (8. kneil et. al. hep-ph/0410289, 1109.2472],
o S-ACOT-MPS [k xie et. al. 18xx00004.
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FFNS calculations

In FENS for b production, we should take Ny =4 in both o and PDF running.
@ The heavy-quark running in the virtual loops is missing.
@ No Flavor Excitation contributions as no heavy-flavor PDF.

If Using Ny =5 PDF in MCFM, MadGraph_aMC@NLO, POWHEG,
@ Nt =15 in the o4 running, e.g. reading directly from LHAPDF;
@ No FE contributions, equivalent to Ny =4 in the PDFs.
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GM-VENS's: Adding the Flavor Excitation terms and
subtracting the double-counted terms (FC+FE-SB).

Figure: Representative diagrams for Flavor Creation, Flavor Excitation and SuBtraction
terms. Thick (thin) lines indicate massive (massless) quark propagators. The dot means

convolution.
Ideally, we have
o p? < mq, SB~FE, FC dominates (FFNS),

° p% > mq, SB~FC, FE takes over (ZMS).
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Comparisons with 2 existing codes

@ FONLL resums logarithms as fragmentation functions and subtracts the
massless limit of fixed-order where only log terms retained . caciaiet. a.

hep-ph/9803400, hep-ph/0102134] .
FONLL = FO + (RS — FOMO0) x G(m, pr). (2)

The matching function is tuned to keep limy, /;,. 0 G(m,pr) = 1.
[+ GM—VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

06 =FC+FE—Ac, where lim oy, = 0p+AoC. 3)
m—0

The subtraction term Ao is logarithms, equivalent to FOMO.

@ S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction
term is calculated with the convolution of splitting function p. colins PrRD19%8, M. Kramer
et. al. PRD200],

SB = 6,q ®@Pqi ¢ ®g(x) (4)
We introduce the massive phase space to capture the threshold effect in FE
and SB by following the idea S-SACOT-) schemew. tung etai. 162002
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O cross section: massless vs. massive phase space.

The matching instability is tamed by the massive phase space.

FONLL deals it with a tuned a tuned matching function G(m,pT)

GM-VFNS has to impose a cut p% > mg.
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Figure: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@ONLO
and FONLL online web. The B* is corrected back to the b-quark with fragmentation
ratio f(b — B¥) = 0.403 [ocaors). 9/18



S-ACOT-MPS vs. LHCb data: t 1 distribution
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Figure: We choose CT14 PDF. The scale and my, uncertainties are calculated by varying

UR = Up = (1/2,1,2),/pT+m and my, =4.75+£0.25 GeV.
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NLO scale uncertainties are large.

® os(uR) is large and varies drastically around pg ~ mq,
o Heavy-flavor PDF Q(x, ur) starts to be generated perturbatively at pup = mq.

We can introduce the ratio observables Rg, /g, (X) = % in which theoretical

uncertainties cancel significantly . mangano 1206 3557).
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Figure: LHCb measurements of DY production at 7 TeV (13022864, and the cross section
ratio R(13TeV/7TeV) of B* p distribution 710.0021).
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S-ACOT-MPS vs. LHCb data: the ratio R(13

Theoretical uncertainties cancel, especially the scale uncertainty.
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NLO vs. LHCb data: double-differential cross section
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Figure: Double differential cross section for 7 TeV. Yellow bands are the total theoretical
uncertainties, added in quadrature. Good overall agreement.
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13 TeV case
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Figure: Double differential cross section for 13 TeV.
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NLO vs. LHCb data: ratios of double-diff. cross sections
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14 Hessian profiling with ePump :

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B* data. Caveat:
We treat the systematic errors as uncorrelated, since we do not have the full
correlated uncertainties.
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We observe the impact on gluon PDF, but still mild, because
o CT14 PDF describe the data very well,

@ The experimental uncertainties are still large.
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PROSA15 PDFs fitting 7 TeV LHCb charm data

compatible with CT14HERA2NLO N¢ = 3.
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Next rounds of LHCb measurements may help constrain the small-x gluon.
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We develop S-ACOT-MPS scheme calculations to the heavy-flavor
hadroproduction.

o Contributions to inclusive heavy quark from both Flavor Creation and Flavor
Excitation;
e The double-counted term from gluon splitting is subtracted;
o We introduce massive phase space to capture the threshold effect.
We obtain good cancellations behaviors in both asymptotic limits:
o pr < mg, the SB cancels the FE terms,
o pr > mq, the SB cancels the FC terms.
Our calculations agree well with the LHCb B* measurements.

With theoretical uncertainties cancel significantly, the ratio observables
impact the gluon-PDF in the small-x region. The precise data in next rounds
can potentially provide strong constraints.

Implementation in MCFM can be easily extended to NNLO, and applied to
other heavy-quark processes, such as H/V + Q.
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