Simplified ACOT scheme with Massive Phase Space (S-ACOT-MPS)

Keping Xie

Department of Physics, Southern Methodist University, Dallas, TX 75275-0175

CTEQ Workshop @ JLAB Parton Distributions as a Bridge from Low to High Energies November 10, 2018

Based on the work with J. Campbell (Fermilab) and P. Nadolsky (SMU) 18xx.xxxx.

What is S-ACOT-MPS?

Simplified-ACOT scheme with Massive Phase Space:

A QCD factorization approach for heavy-quark scattering at hadron-hadron colliders at (N)NLO in $\alpha_{\!\rm s}.$

2/18

Heavy-Flavor Production in DIS

Figure: Expected uncertainty of Fixed Flavor Number Scheme for the Heavy-Flavor structure function in DIS T. Tung et. al. JPG2002.

- $Q \gtrsim m_Q$, m_Q matters, $Q(x, \mu) \approx 0$, Flavor Creation (N_f scheme).
- $Q \gg m_Q$, $m_Q \approx 0$, $Q(x, \mu)$ matters, Flavor Excitation ($N_f + 1$ scheme).

Aivazis-Collins-Olness-Tung $_{\mbox{PRD1994}}$ introduce an asymptotic subtraction (SB) term to get rid of the double-counting between Flavor Creation and Flavor Excitation, which switches from $N_{\rm f}$ to $N_{\rm f}+1$ scheme (Variable Flavor Number Scheme).

$$FC + FE - SB$$
 (1)

(日)

- $Q\gtrsim m_Q\text{, }SB\simeq FE\text{, return back to }N_f$ scheme.
- $Q\gg m_Q,\ SB\simeq FC$, switch to N_f+1 scheme.

3/18

- Simplified-ACOT scheme [J. Collins PRD1998, M. Kramer et. al. PRD2000] treats heavy-quark as massless in Flavor Excitation.
 Drawback: instability of the cancellation between SB and FE around the switching point.
- The S-ACOT- χ sheme [W. Tung et.al. JPG2002] introduces rescaling variable $\chi = x(1 + 4m_Q^2/Q^2)$ to capture the mass threshold effect. It stabilizes the perturbative convergence near the switching point by enforcing energy-momentum conservation in all scattering contributions.
- The S-ACOT-MPS [K. Xie et. al. 1800,0000] scheme extends the S-ACOT- χ method to hadron-hadron collisions.

Lots of related experimental data such as D,B mesons at LHCb, b-quark jets at UA1, D0, CDF, ATLAS, and CMS.

- Forward heavy-quark productions at the LHCb are sensitive to gluon-PDF at small-x, because of $x_{1,2}\sim \frac{\sqrt{m^2+p_T^2}}{\sqrt{s}}e^{\pm y}$ [PROSA arXiv:1503.04581].
- \bullet Physical observable: $p_{\rm T}^{\rm Q}$
 - $p_T^Q \ll m_Q, \ N_f$ Fixed Flavor Number Scheme [P. Nason et. al. NPB1989, W. Beenakker NPB1991],
 - $p_T^Q \gg m_Q$, Zero-Mass Scheme (N_f+1),
 - $p_T^Q \sim m_Q$, General-Mass Variable Flavor Number Scheme.
- Existing GM-VFNS's for heavy-quark hadroproduction
 - FONLL [M. Cacciari et. al., hep-ph/9803400, hep-ph/0102134],
 - GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],
 - S-ACOT-MPS [K. Xie et. al. 18xx.xxxxx].

FFNS calculations

In FFNS for b production, we should take $N_f=4$ in both $\alpha_{\!s}$ and PDF running.

- The heavy-quark running in the virtual loops is missing.
- No Flavor Excitation contributions as no heavy-flavor PDF.

If Using $N_{\rm f} = 5$ PDF in MCFM, MadGraph_aMC@NLO, POWHEG,

- $N_{f}=5$ in the $\alpha_{\!s}$ running, e.g. reading directly from LHAPDF;
- $\bullet\,$ No FE contributions, equivalent to $N_f=4$ in the PDFs.

GM-VFNS's: Adding the Flavor Excitation terms and subtracting the double-counted terms (FC+FE-SB).

Figure: Representative diagrams for Flavor Creation, Flavor Excitation and SuBtraction terms.Thick (thin) lines indicate massive (massless) quark propagators. The dot means convolution.

Ideally, we have

•
$$p_T^Q \ll m_Q$$
, $SB \simeq FE$, FC dominates (FFNS),

• $p_T^Q \gg m_Q$, $SB \simeq FC$, FE takes over (ZMS).

Comparisons with 2 existing codes

• FONLL resums logarithms as fragmentation functions and subtracts the massless limit of fixed-order where only log terms retained [M. Cacciari et. al.,

hep-ph/9803400, hep-ph/0102134].

$$FONLL = FO + (RS - FOM0) \times G(m, p_T).$$
⁽²⁾

The matching function is tuned to keep $\lim_{m/p_{\rm T}\to 0}G(m,p_{\rm T})=1.$

• GM-VFNS code [B. Kneihl et. al. hep-ph/0410289, 1109.2472],

$$\sigma = FC + FE - \Delta \sigma$$
, where $\lim_{m \to 0} \sigma_m = \sigma_0 + \Delta \sigma$. (3)

The subtraction term $\Delta\sigma$ is logarithms, equivalent to $\mathrm{FOM0}.$

• S-ACOT-MPS scheme is equivalent to GM-VFNS, except the subtraction term is calculated with the convolution of splitting function [J. Collins PRD1998, M. Kramer et. al. PRD200],

$$SB = \hat{\sigma}_{gQ} \otimes P_{Q \leftarrow g} \otimes g(x)$$
 (4)

We introduce the massive phase space to capture the threshold effect in FE and SB by following the idea S-ACOT- χ scheme_[W. Tung et al. JPG2002].

NLO cross section: massless vs. massive phase space.

The matching instability is tamed by the massive phase space. FONLL deals it with a tuned a tuned matching function $G(m,p_{\rm T})$ GM–VFNS has to impose a cut $p_{\rm T}^Q > m_Q.$

Figure: The FC is calculated with MCFM, which is cross-checked with MadGraph_aMC@NLO and FONLL online web. The B^{\pm} is corrected back to the b-quark with fragmentation ratio $f(b \rightarrow B^{\pm}) = 0.403$ [PDc2016].

S-ACOT-MPS vs. LHCb data: the $p_{\rm T}^{\rm b}$ distribution

 $\begin{array}{l} \mbox{Figure: We choose CT14 PDF. The scale and } m_b \mbox{ uncertainties are calculated by varying} \\ \mu_R = \mu_F = (1/2,1,2) \sqrt{p_T^2 + m_Q^2} \mbox{ and } m_b = 4.75 \pm 0.25 \mbox{ GeV.} \\ \end{array} \\ \begin{array}{l} \mbox{ or } m_b = 0.25 \mbox{ GeV.} \\ \mbox{ or } m_b =$

NLO scale uncertainties are large.

- $lpha_{
 m s}(\mu_{
 m R})$ is large and varies drastically around $\mu_{
 m R} \sim {
 m m}_{
 m Q}$,
- Heavy-flavor PDF ${\rm Q}({\rm x},\mu_{\rm F})$ starts to be generated perturbatively at $\mu_{\rm F}={\rm m}_{\rm Q}.$

We can introduce the ratio observables $R_{E_1/E_2}(X) = \frac{\sigma(X,E_1)}{\sigma(X,E_2)}$, in which theoretical uncertainties cancel significantly [M. Mangano 1206.357].

Figure: LHCb measurements of D^0 production at 7 TeV $_{\rm [1302.2864]}$, and the cross section ratio R(13TeV/7TeV) of $B^\pm~p_T$ distribution $_{\rm [1710.04921]}$.

Theoretical uncertainties cancel, especially the scale uncertainty.

Figure: Double differential cross section for 7 TeV. Yellow bands are the total theoretical uncertainties, added in quadrature. Good overall agreement.

Figure: Double differential cross section for 13 TeV.

NLO vs. LHCb data: ratios of double-diff. cross sections

15/18

CT14 Hessian profiling with ePump (C. Schmidt et. al. 1806.07950).

LHCbBX(w10): CT14 PDF updated with wight 1(10) LHCb B^{\pm} data. Caveat: We treat the systematic errors as uncorrelated, since we do not have the full correlated uncertainties.

We observe the impact on gluon PDF, but still mild, because

- CT14 PDF describe the data very well,
- The experimental uncertainties are still large.

PROSA15 PDFs fitting 7 TeV LHCb charm data $_{\rm percess}$, compatible with CT14HERA2NLO $\rm N_f=3.$

Next rounds of LHCb measurements may help constrain the small-x gluon.

イロト イポト イヨト イヨト

- We develop S-ACOT-MPS scheme calculations to the heavy-flavor hadroproduction.
 - Contributions to inclusive heavy quark from both Flavor Creation and Flavor Excitation;
 - The double-counted term from gluon splitting is subtracted;
 - We introduce massive phase space to capture the threshold effect.
- We obtain good cancellations behaviors in both asymptotic limits:
 - $p_T \ll m_Q,$ the SB cancels the FE terms,
 - $\rm p_T \gg m_Q$, the SB cancels the FC terms.
- \bullet Our calculations agree well with the LHCb B^\pm measurements.
- With theoretical uncertainties cancel significantly, the ratio observables impact the gluon-PDF in the small-x region. The precise data in next rounds can potentially provide strong constraints.
- \bullet Implementation in MCFM can be easily extended to NNLO, and applied to other heavy-quark processes, such as $\rm H/V+Q.$