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Handbag diagram 2/18

p p

q q
z 0 Starting point of DIS analysis:

virtual Compton amplitude

Lowest approximation:
handbag diagram

To avoid inessential complications related to spin,
consider a scalar handbag diagram
In the coordinate representation

T (p, q) =

∫
d4z e−i(qz) D(z) 〈p|φ(0)φ(z)|p〉

D(z) = −i/4π2z2 is the scalar massless propagator

p p

q q

k k
χ(k, p)

In momentum space

T (p, q) =

∫
d4k

(q + k)2
χp(k)
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Neglecting k− 3/18

T (p, q) =

∫
d4k

(q + k)2
χp(k) =

∫
d4k

q2 + 2(qk) + k2
χp(k)

p p

q q

k k
χ(k, p)

Take the frame where p and q are
purely longitudinal, i.e.
q = (q+, q− = −Q2/q+, q⊥ = 0),
p = (p+, p− = p2/2p+, p⊥ = 0), and
k = (k+ = xp+, k−, k⊥). Then

T (p, q) =

∫
d2k⊥dk+dk−

−Q2 + 2(qk) + 2k+k− − k2
⊥
χp(k)

To concentrate on k⊥ effects, take p2 = 0
Then p− = 0 and q+ = −xBjp+, where xBj = Q2/2(pq)
Neglecting k− in the hard propagator
(equivalent to assuming that k2 equals −k2

⊥) we get

T (p, q)|k−=0 =

∫
dk2
⊥dx

Q2(x/xBj − 1)− k2
⊥
F(x, k2

⊥)
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Neglecting k−, cont. 4/18

T (p, q)|k−=0 =

∫
dk2
⊥dx

Q2(x/xBj − 1)− k2
⊥
F(x, k2

⊥)

Transverse momentum dependent distribution

F(x, k2
⊥) =

1

p+

∫
dk−χp(k)

Because of rotational invariance in k⊥ plane TMD depends on k2
⊥ only

Taking imaginary part gives

ImT (p, q)|k−=0 =
1

2(pq)

∫
dk2
⊥F(x = xBj(1 + k2

⊥/Q
2), k2

⊥) .

Since x < 1, we have restriction xBj(1 + k2
⊥/Q

2) < 1 or
k2
⊥ < /Q2(1/xBj − 1) which is W 2 = (q + p)2 for a massless hadron

We may write

F (xBj, Q
2)|k−=0 =

∫ W2

0
dk2
⊥F(x(k2

⊥), k2
⊥)

with x(k2
⊥) = xBj(1 + k2

⊥/Q
2)
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Virtuality distributions 5/18

Can we get a description in terms of x and kT without neglecting k−?
For any Feynman diagram, for arbitrary z and arbitrary p

〈p|φ(0)φ(z)|p〉 =

∫ ∞
0

dσ

∫ 1

−1
dxΦ(x, σ) e−ix(pz)−iσ(z2−iε)/4

Parton virtuality distribution (PVD) Φ(x, σ)

Support: −1 ≤ x ≤ 1 and σ ≥ 0

On the light cone z2 = 0 and we get that the lowest moment∫ ∞
0

Φ(x, σ) dσ = f(x)

of PVD Φ(x, σ) gives the usual twist-2 parton density f(x)

The first moment ∫ ∞
0

σΦ(x, σ) dσ = iΛ2 f1(x)

involves the function f1(x) that describes the x-distribution of the average
parton virtuality, etc.



Scalar
handbag and
nonperturba-
tive evolution
in inclusive

DIS

Handbag
diagram
Neglectingk−
Virtuality distributions

TMDs

Integrated TMDs

DIS handbag
diagram

Forward Compton
amplitude

ξ-scaling

Spectral
representation
Running Nachtmann
variable

Massless target

Models for soft TMDs

Exponentially
decreasing TMDs

Structure functions

Summary

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Q2/⇤2 = 10

xBj

F (xBj, Q
2) Transverse momentum dependent distributions

6/18

Define “transverse” by requiring that the hadron momentum p is purely
longitudinal, becoming a pure “plus” in the p2 → 0 limit
Project matrix element onto z+ = 0 by choosing z that has z− and z⊥
components only, and write

〈p|φ(0)φ(z)|p〉|z+=0 =

∫ 1

−1
P(x, z2

⊥) e−ix(pz−) dx

The function P(x, z⊥) is the impact parameter distribution function
Relation with PVD

P(x, z2
⊥) =

∫ ∞
0

dσΦ(x, σ) eiσ(z2⊥+iε)

Introducing TMD through a Fourier transform

P(x, z2
⊥) =

1

π

∫
F(x, k2

⊥) ei(k⊥z⊥) d2k⊥

Its PVD representation is

F(x, κ2) = i

∫ ∞
0

dσ

σ
Φ(x, σ) e−i(κ

2−iε)/σ

Note that F(x, κ2) is defined not only for positive κ2

but also for negative and complex values of κ2
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Integrated TMDs 7/18

Another important function is integrated TMD f(x, µ2)

f(x, µ2) ≡
∫ µ2

dκ2F(x, κ2)

In terms of the PVD it can be written as

f(x, µ2)−f(x, µ2
0) =

∫ ∞
0

dσΦ(x, σ)
[
e−i(µ

2
0−iε)/σ − e−i(µ

2−iε)/σ
]

Assuming that f(x, µ2) is a regular function for µ2 = 0, we may view

f(x, µ2)− f(x, 0) ≡
∫ µ2

0
dκ2F(x, κ2)

for real positive µ2 as a scale-dependent parton distribution
The hard ∼ 1/κ2 component of the TMD F(x, κ2) results in a familiar
logarithmic evolution dependence of f(x, µ2)
For remaining Fsoft(x, κ2) component, the integral over κ2 converges at
the upper limit, so that

f soft(x,+∞)− f soft(x, 0) = f soft(x)

Still, integrating the soft part of F(x, κ2) (say, ∼ e−κ2/Λ2
) to a finite µ2

value, results in a µ2-dependence (e.g. in a form like [1− e−µ2/Λ2
])

This gives nonperturbative evolution in µ
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Calculating DIS handbag diagram 8/18

T (p, q) =

∫
d4z e−i(qz) D(z) 〈p|φ(0)φ(z)|p〉 , D(z) = −i/4π2z2

To integrate over d4z, we combine

〈p|φ(0)φ(z)|0〉 =

∫ ∞
0

dσ

∫ 1

−1
dxΦ(x, σ) eix(pz)−iσ(z2−iε)/4

and
4

z2 − iε
=i

∫ ∞
0

e−iαz
2/4−εα dα

Obtain forward Compton amplitude in terms of PVD

T (p, q) = i

∫ 1

0
dξ

∫ 1

−1
dx

∫ ∞
0

dσ

σ
Φ(x, σ)eiξ[(q+xp)

2+iε]/σ

In terms of TMDs

T (p, q) =

∫ 1

0
dξ

∫ 1

−1
dxF(x,−ξ[(q + xp)2 + iε])

=

∫ 1

−1
dx

f(x, 0)− f(x,−(q + xp)2 − iε))
(q + xp)2 + iε

where f(x, µ2) is the integrated TMD
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Structure of forward Compton amplitude 9/18

T (p, q) =

∫ 1

0
dx

f(x, 0)− f(x,−(q + xp)2 − iε))
(q + xp)2 + iε

p p

q q
q + xp

xp xp

Forward Compton amplitude is given
by hard propagator 1/(q + xp)2

multiplied by the TMD F(x, κ2)
integrated over κ2 up to
µ2 = −(q + xp)2

Note: p is actual external momentum
For spacelike (q + xp)2, when µ2 > 0, we deal with a TMD
integrated over transverse momentum up to µ
Given the large scale Q2 involved in (q + xp)2, one may propose to take the
Q2 →∞ limit in the numerator to get, for the soft component,

T soft(p, q)
∣∣∣
Q2→∞

?⇒ −
∫ 1

0
dx

f soft(x)

(q + xp)2 + iε

For the imaginary part, this gives

1

π
ImT soft(p, q)

∣∣∣∣
Q2→∞

?⇒
∫ 1

0
dx f soft(x)δ[(q + xp)2]
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Unexpected ξ-scaling 10/18

1

π
ImT soft(p, q)

∣∣∣∣
Q2→∞

?⇒
∫ 1

0
dx f soft(x)δ[(q + xp)2]

Since p is the actual external momentum with p2 = M2,
we have (q + xp)2 = −Q2 + 2x(qp) + x2M2, and

F (xBj, Q
2)

?
=2(pq)

∫ 1

0
dxf(x)δ(Q2(1− x/xBj)− x2M2)

=
1√

1 + 4x2
BjM

2/Q2

∫ 1

0
dxf(x)δ(x− ξN)

=
f(ξN)√

1 + 4x2
BjM

2/Q2

where ξN is the (twist-2) Nachtmann variable

ξN =
2xBj

1 +
√

1 + 4x2
BjM

2/Q2

Note: we did not even discuss the twist decomposition
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Spectral representation 11/18

T (p, q) =

∫ 1

0
dx

f(x, 0)− f(x,−(q + xp)2 − iε))
(q + xp)2 + iε

Using δ[(q + xp)2] in the calculation of imaginary part invalidates the
argumentation that (q + xp)2 is large
If f(x, µ2) is regular for µ2 = 0, then T (p, q) cannot have imaginary part
from the explicit 1/(q + xp)2 pole, because numerator cancels it
But we have no doubt that the handbag diagram for T (p, q), i.e.

f(x, 0)− f(x,−(q + xp)2 − iε))
(q + xp)2 + iε

,

must have imaginary part. Thus, we write a spectral representation

f(x, µ2)− f(x, 0)

µ2
=

∫ ∞
s0

ds
ρ(x, s)

µ2 + s− iε

Imaginary part of f(x, µ2) for µ2 < −s0 is given by

Im f(x,−s) = πsρ(x, s)

For the soft component, we can take the µ2 → +∞ limit to get

f soft(x) =

∫ ∞
s0

ds ρsoft(x, s)
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Running Nachtmann variable 12/18

f(x, µ2)− f(x, 0) = µ2

∫ ∞
s0

ds
ρ(x, s)

µ2 + s− iε

Differentiating with respect to µ2 gives a spectral representation for TMD:

F(x, κ2) =

∫ ∞
s0

ds
s ρ(x, s)

(κ2 + s− iε)2

Spectral representation for DIS structure function

F (xBj, Q
2) =

∫ W2

s0

ds
ρ(ξ(s), s)√

1 + 4x2
BjM

2(1 + s/Q2)/Q2
,

where W 2 = (p+ q)2 = Q2(1/xBj − 1) +M2

Generalized Nachtmann variable ξ(s) depends on the parameter s

ξ(s) =
2xBj(1 + s/Q2)

1 +
√

1 + 4x2
Bj(1 + s/Q2)M2/Q2

W 2-restriction on s comes from the requirement ξ(s) < 1
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Massless target 13/18

ξ(s) reflects both dynamic transverse momentum
and kinematic target-mass effects

To concentrate on dynamic effects, take M2 = 0 to get

F0(xBj, Q
2) =

∫ W2

0
ds ρ(x(s), s) ,

where x(s) = xBj(1 + s/Q2)

Formula similar to that by Accardi and Qiu (2008) derived as a “jet-mass
correction”, based a quark propagator with some effective mass

√
s

In our approach, we do not change quark propagator, keeping it massless

Compare to result obtained by neglecting k− in the hard part

F (xBj, Q
2)|k−=0 =

∫ W2

0
dk2
⊥F(x(k2

⊥), k2
⊥) ,

Main difference is that the integrand is now
the density ρ(x(s), s) rather than TMD F(x(k2

⊥), k2
⊥)
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Models for soft TMDs 14/18

For simplicity, assume a factorized form, ρsoft(x, s) = f soft(x)ρsoft(s)

Density ρ(s) is normalized by ∫ ∞
s0

ds ρ(s) = 1

Use relation to TMD. For a factorized Ansatz,

F(x, k2
⊥) = f(x)

∫ ∞
s0

ds
s ρ(s)

(k2
⊥ + s− iε)2

≡ f(x)F(k2
⊥)

Simplest function: ρ(s) = δ(s−m2). Then

F(x, k2
⊥) = f(x)

m2

(k2
⊥ +m2)2

Has a ∼ 1/k4
⊥ asymptotic behavior. The integrated TMD is given by

f(x, µ2)− f(x, 0) = f(x)

(
1−

m2

µ2 +m2

)
,

with a ∼ m/µ2 rate of approach to the asymptotic value
IPD is given by P(x, b2) = bmK1(bm), with an exponential falloff for large
b, and a finite unity value at the origin b = 0
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Models for exponentially decreasing TMDs 15/18

The ρ(s) = δ(s−m2) model gives 1/k4
⊥ behavior for large k⊥

In general, the coefficient of 1/k4
⊥ is given by∫ ∞
0

ds s ρ(s)

Usual expectation: soft TMD decreases faster than any power of 1/k2
⊥

Decrease faster than 1/k4
⊥ is realized only if the integral of sρ(s) vanishes,

which is impossible for a positive-definite ρ(s)
Let us try to build a model for F(x, k2

⊥) that vanishes faster than any power
of 1/k2

⊥ and is given by the PVD representation

This “mild” requirement excludes a popular Gaussian e−k
2
⊥/Λ

2
factor

For orientation: propagator of a scalar particle with mass m is given by

D(z,m) =
1

(4π)2

∫ ∞
0

e−iσz
2/4−i(m2−iε)/σdσ .

Falls off exponentially ∼ e−|z|m for large space-like distances
For small z2, propagator D(z,m) has 1/z2 singularity
We want 〈p|φ(0)φ(z)|p〉 to be finite for z = 0 and add (−1/Λ2) to z2. PVD:

Φm(x, σ) = f(x)
eiσ/4Λ2−im2/σ

4imΛK1(m/Λ)
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Results in the impact parameter distribution that is finite for b⊥ = 0

Pm(x, b⊥) = f(x)
K1

(
m
√

1/Λ2 + b2⊥

)
K1(m/Λ)

√
1 + Λ2b2⊥

and has an exponential ∼ e−m|b⊥| fall-off for large b⊥
It corresponds to a TMD that is finite for k⊥ = 0

Fm(x, k2
⊥) = f(x)

K0

(√
k2
⊥ +m2/Λ

)
2mΛK1(m/Λ)

and exponentially decreases (like e−k⊥/Λ) for large k⊥
The scalar density in this case is

sρm(x, s) =
f(x)

2

√
s−m2

J1(
√
s−m2/Λ)

mK1(m/Λ)
θ(s−m2)

In the spin-1/2 quark case one deals with the doubly integrated TMD which
corresponds to the density

s2ρm(x, s) = f(x)(s−m2)
J2(
√
s−m2/Λ)

mK1(m/Λ)
θ(s−m2)
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Take simplest model with m = 0 (M = 0 implied) and f(x) = (1− x)3
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For small Q2, expect that data are dual to a curve
that is lower than pQCD evolution extrapolation from high Q2
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Summary 18/18

Demonstrated that scalar handbag diagram can be expressed in terms of
TMDs without approximations

Introduced spectral representation for integrated TMDs

Derived generalized Nachtmann variable depending on the target mass M
and also on the spectral parameter s

Proposed simple (but nontrivial) models for TMDs and spectral densities

Demonstrated a pattern of nonperturbative evolution of structure functions
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