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Handbag diagram

Scalar
handbag and . . .
nonperturba- @ Starting point of DIS analysis:

tive evolution virtual Compton amplitude
in inclusive

DIS @ Lowest approximation:
p handbag diagram

Handbag
diagram @ To avoid inessential complications related to spin,

consider a scalar handbag diagram
@ In the coordinate representation

T(p,q) = /d4z e~ 9% D(z) (pl(0)$(2)Ip)

@ D(z) = —i/4n?2? is the scalar massless propagator

@ In momentum space

4
70,0 = [ )



handbag and

4 4
nonperturba- T( o d*k & L L
tive evolution pv‘])—/ —— Xxp(k) = 5 xp(k)
Lol (a+k) a2+ 2(qk) + k

DIS

@ Take the frame where p and q are
purely longitudinal, i.e.
q=(g+,9- = —Q%/q+,q. = 0),
p=(p+,p— =p?/2p+,pL = 0), and
k= (k‘+ = :L‘p+,]€_,k21_). Then

Neglecting k __

42k | dk dk—
—Q% + 2(qk) + 2k k_ — K2 Xp(k)
(gk) + 2k k- s

@ To concentrate on k| effects, take p2 = 0
@ Thenp_ =0and g+ = —zgjp+, where zg; = Q2/2(pq)
@ Neglecting k_ in the hard propagator

(equivalent to assuming that k2 equals —k2 ) we get

dk? dx
T 0= L F(z, k3



Neglecting £_, cont.

Scalar
handbag and
nonperturba-
tive evolution T(p,q)lk_=o0 = 2
in inclusive
DIS

k:2 dx
(w/xp; — 1) — k2

f(ac,ki)

@ Transverse momentum dependent distribution

Fla,k?) = i / dk_xp(k)

Neglecting k __

@ Because of rotational invariance in &, plane TMD depends on k2 only
@ Taking imaginary part gives

I T(p, ¢)l_ —0 = / k2 Fx = ap;(1+ K2 /Q2), K2) .

1
2(pq)
@ Since z < 1, we have restriction zg;(1 + k% /Q2) < 1 or

k% < /Q?(1/xmj — 1) whichis W2 = (q +p)2 for a massless hadron
@ We may write

W2
F(xBj,QQ)\k_:Oz/O dk? F(x(k2), k%)

with z(k% ) = zp;j(1 + k2 /Q?)



Virtuality distributions

hanﬁgi'grand Can we get a description in terms of z and kr without neglecting k_ ?

nonperturba- @ For any Feynman diagram, for arbitrary z and arbitrary p
tive evolution

in inclusive
DIS

oo 1 ) . .
(Dl $(0)$(2)[p) = /0 a [ [ d(z,0) e ) i/

@ Parton virtuality distribution (PVD) ®(z, o)
@ Support: —1<z<landoc >0
@ On the light cone 22 = 0 and we get that the lowest moment

Virtuality distributions

/000 P(z,0)do = f(z)

of PVD ®(z, o) gives the usual twist-2 parton density f(z)
@ The first moment

/00 0 ®(x,0) do = iA? f1(x)

0

involves the function f1(z) that describes the z-distribution of the average
parton virtuality, etc.



Transverse momentum dependent distributions

6/18

Scalar Define “transverse” by requiring that the hadron momentum p is purely

handbag and : . . « . o .

[t Iongltudmal,.becommg a pure “plus” in the p - 0 limit

tive evolution @ Project matrix element onto z; = 0 by choosing =z that has z— and z .
in inclusive components only, and write

DIS
1 .
PO =m0 = [ Plat)e 20 do

The function P(z, z, ) is the impact parameter distribution function
Relation with PVD

TMDs

P(x,21) = /Ooo do ®(z, o) eio(Z1+ic)
@ Introducing TMD through a Fourier transform
P(z,21) = %/F(z,ki)ei(’uﬂ)cﬂ]u
@ Its PVD representation is
F(z,w%) = i/oo do ®(z,0) e~ i =i9)/o
0 g

@ Note that F(z, x2) is defined not only for positive 2
but also for negative and complex values of 2



Integrated TMDs

Scalar @ Another important function is integrated TMD f(z, 1)
handbag and
nonperturba- 2

tive evolution flz, u?) = /M dr?F(z, k2)

in inclusive
DIS
@ Interms of the PVD it can be written as

oo oo 9
Fo )= f i) = [ do @(a,0) [emitb=iore it/

@ Assuming that f(z, u?) is a regular function for 42 = 0, we may view

2

f(:r,,u2) — f(z,0) = /M dn2]-'(x,n2)

0

Integrated TMDs

for real positive u? as a scale-dependent parton distribution

@ The hard ~ 1/x? component of the TMD F(z, x2) results in a familiar
logarithmic evolution dependence of f(z, u?)

@ For remaining 75°f(z, k2) component, the integral over x2 converges at
the upper limit, so that

fSOft(l‘,—l-()O) _ fSOft(J:, 0) — fSOft(:B)
@ Still, integrating the soft part of F(z, x2) (say, ~ e—*"/A%) to a finite 2

value, results in a u2-dependence (e.g. in a form like [1 — e—#*/A%))
@ This gives nonperturbative evolution in u



Calculating DIS handbag diagram

Scalar
handbag and
nonperturba- T — 4 —i(qz) D D - _i/4 2 2
tive evolution (p, q) /d ze (2) (p|¢(0)¢(z)\p> s (2) 7,/ Tz
in inclusive

ol @ To integrate over d*z, we combine

&S] 1 X . .
(p|#(0)¢(2)]0) =/ da/ da ®(x, ) eiv(P2)—io(z*—ic)/4
0 —1
and 4 =i /00 emiaz?/A—ea g
22 — 1€ 0
DIS handbag @ Obtain forward Compton amplitude in terms of PVD

diagram
1 1 oo ‘ ‘
T(p,q) :Z/ d&/ dx/ d—aq:v(x,o-)e’bﬁ[(quzp)QJrze]/o
0 —1 0 [
@ Interms of TMDs
1 1
T(o0) = [ dt [ doFa~tlla+on)? +ic)

_ /1 d f(l‘,o) - f(x’f(Q+mp)2 - ZE))
1 (¢ + zp)? + ie

where f(x, u2) is the integrated TMD




Structure of forward Compton amplitude 918

Scalar
handbag and .
nonperturba- /1 de f(@,0) = f(z, —(q + 2p)* — i€))

0

tive evolution + zp)2 + e
in inclusive (q p)

DIS

@ Forward Compton amplitude is given
by hard propagator 1/(q + xp)?
multiplied by the TMD F(z, x2)
integrated over x2 up to
p? = —(q +ap)?

@ Note: p is actual external momentum

@ For spacelike (g + zp)?, when u? > 0, we deal with a TMD
o " integrated over transverse momentum up to
@ Given the large scale Q2 involved in (¢ + zp)2, one may propose to take the
Q? — oo limit in the numerator to get, for the soft component,

1 soft
Tsoft (p’ q)‘ ) :7> _/ dx f (;U) :
Q% —o00 0 (q+xp)? +ic

@ For the imaginary part, this gives

1 S 2 !
ST g S [ e et @el(a + on)?
p 0

Q200




Unexpected ¢-scaling

Scalar
handbag and 1
nonperturba- - soft
tive evolution . Im 7% (p, q)
in inclusive
DIS

. 1
2 / do £ (2)](q + zp)?]
Q2—00 0

@ Since p is the actual external momentum with p? = M?2,
we have (q + zp)? = —Q? + 2z(qp) + 2 M?, and

- 1
F(zp;, Q%) ﬁ2(pq)/0 dz f(2)8(Q%(1 — x/zp;j) — 22 M?)

1
a ,/1+4:c]23jM2/Q2

f(én)

\/1+ 43, M2 /Q?

where £y is the (twist-2) Nachtmann variable

1
/0 da f(2)5(x — £x)

£-scaling

2xBj

1+ /1442, M2 /Q?

@ Note: we did not even discuss the twist decomposition

EN =




Spectral representation

han?jgzlgrand T(p,q) = /1 de f(x,0) — f(zx,—(q + xp)? — ie))
0

nonperturba- 2 ;
tive evolution (¢ + zp)? + ie

in inclusive . i i . . . i
DIS @ Using §[(q + xp)?] in the calculation of imaginary part invalidates the

argumentation that (q + xp)? is large

@ |If f(x, u?) is regular for 2 = 0, then T'(p, ¢) cannot have imaginary part
from the explicit 1/(q + zp)? pole, because numerator cancels it

@ But we have no doubt that the handbag diagram for T'(p, q), i.e.

f(zz 0) - f(xa 7(q + zp)Q - 26))
(g + zp)? + ic
must have imaginary part. Thus, we write a spectral representation

f(xvl"Q) 7f(£L‘,O) _ /oo ds p(x, S)

Spectral 2 u2 + s —ie
representation

)

@ Imaginary part of f(x, u2) for u? < —sq is given by
Im f(z, —s) = msp(z, s)

@ For the soft component, we can take the u? — +oo limit to get

fsoft(m) — /oo dSpSOft(I,S)

0



Running Nachtmann variable

Scalar
handbag and

nonperturba- 2 a: 8)
tive evolution f(a:, H ) ac 0) / ds + s — 1€
in inclusive N

DIS

@ Differentiating with respect to u2 gives a spectral representation for TMD:

Flz, k2) / ds _sp@s)

(k2 + s — i€)?
@ Spectral representation for DIS structure function

p(E(s), )
1+ e M2(1+5/Q%)/Q?

W2
F(zgj, Q%) = / ds
50

where W2 = (p+¢)? = Q?>(1/zp; — 1) + M?
el @ Generalized Nachtmann variable £(s) depends on the parameter s
QxBj(l + S/QQ)

&(s) =
) 1+\/1+4:c2Bj(1+s/Q2)M2/Q2

@ W2-restriction on s comes from the requirement £(s) < 1
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Massless target

£(s) reflects both dynamic transverse momentum
and kinematic target-mass effects

To concentrate on dynamic effects, take M2 = 0 to get

2

w
FO(sz,QQ) = /0 ds p(z(s),s)

where z(s) = zp;(1 + s/Q?)

Formula similar to that by Accardi and Qiu (2008) derived as a “jet-mass
correction”, based a quark propagator with some effective mass /s

In our approach, we do not change quark propagator, keeping it massless
Compare to result obtained by neglecting k_ in the hard part

w2

F(zpj, @*)|k_—o =/0 dk3 F(z(k]), k7)),

Main difference is that the integrand is now
the density p(z(s), s) rather than TMD F(z(k?% ), k2 )



Models for soft TMDs

Bally For simplicity, assume a factorized form, p3°f (z, s) = f5°ft(z)p%°ft (s)

handbag and

nonperturba- @ Density p(s) is normalized by
tive evolution
in inlg:tésive /Oo ds p(s) -1
S0
@ Use relation to TMD. For a factorized Ansatz,
s p(s) _
Flakd) = 1) [ "o g2 = 1@ 0D

@ Simplest function: p(s) = (s — m?). Then

F(=, ki) f(=) W

@ Hasa~ 1/k‘j_ asymptotic behavior. The integrated TMD is given by

o) = f.0) = 160) (1= 7).

p? +m?

Models for soft TMDs

with a ~ m/u? rate of approach to the asymptotic value
@ IPDis given by P(z,b?) = bmK; (bm), with an exponential falloff for large
b, and a finite unity value at the origin b = 0



\ Models for exponentially decreasing TMDs 1511

ool The p(s) = §(s — m?) model gives 1/k% behavior for large k.
nzgpeﬁ%rﬁ;_ In general, the coefficient of 1/k% is given by
tive evolution

in inclusive >
DIS /0 ds s p(s)

Usual expectation: soft TMD decreases faster than any power of 1/k%
Decrease faster than 1/k4l is realized only if the integral of sp(s) vanishes,
which is impossible for a positive-definite p(s)

@ Let us try to build a model for F(z, k% ) that vanishes faster than any power
of 1/k2 and is given by the PVD representation

This “mild” requirement excludes a popular Gaussian e k1 /A% factor
For orientation: propagator of a scalar particle with mass m is given by

1 > —icz2/4—i(m?—ie) /o
D(z,m):W/0 e /4= o de .

Falls off exponentially ~ e~!=I™ for large space-like distances
For small 22, propagator D(z, m) has 1/22 singularity
We want (p|$(0)¢(z)|p) to be finite for = = 0 and add (—1/A?) to z2. PVD:

eia/4A2 —im? /o

Exponentially
decreasing TMDs

Pm(@,0) = J(@) e Ty



Models for exponentially decreasing TMDs,

cont.

Scalar @ Results in the impact parameter distribution that is finite for 5, =0
handbag and

nonperturba-
tive evolution Ky (m\ [1/A% +b% )

in inclusive P (2,b1) = f(x)
DIS Ki1(m/A)y/1+ A20%

and has an exponential ~ e=™1bL 1 fall-off for large b,
@ It corresponds to a TMD that is finite for k; =0

Ko (/K3 +m2/A)

Fm(z, ki) = f(=z) 2mAK;y(m/A)

and exponentially decreases (like e=*L1/4) for large k|
@ The scalar density in this case is

_ f@ Ji(Vs —m?/A)
spm(z,s) = T\/s —m?2 W@(s —m?2)

@ In the spin-1/2 quark case one deals with the doubly integrated TMD which
corresponds to the density

Exponentially
decreasing TMDs

2 = f(z)(s — m? @ s—m?



\ Modeling structure functions

Scal i ; _ — 0impli —(1— )3
handgaag'and @ Take simplest model with m = 0 (M = 0 implied) and f(z) = (1 — x)

nonperturba-

tive evolution F(ﬂfij QQ) F(xg;, Q2)
in inclusive 10 10f
DIS . \\ Q*/A2 =10 BN Q%/A* =20
\

TBj TBj
F(zB;, Q) F(xp;, Q%)
N Q2/A% = 30 N Q?/A* =50
08 \\ o \\
6 \ 06 \

Structure functions

@ For small Q2, expect that data are dual to a curve
that is lower than pQCD evolution extrapolation from high Q2
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Summary

Demonstrated that scalar handbag diagram can be expressed in terms of
TMDs without approximations

Introduced spectral representation for integrated TMDs

Derived generalized Nachtmann variable depending on the target mass M
and also on the spectral parameter s

Proposed simple (but nontrivial) models for TMDs and spectral densities
Demonstrated a pattern of nonperturbative evolution of structure functions
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