Sorting out energy loss for medium-modified jets

Jasmine Brewer

With Guilherme Milhano and Jesse Thaler

arXiv: 1812.05111 Phys. Rev. Lett. **122**, 222301

Jets: a multi-scale probe of the QGP

Jets: a multi-scale probe of the QGP

• How is a jet modified by the quark-gluon plasma?

Jets: a multi-scale probe of the QGP

- How is a jet modified by the quark-gluon plasma?
- What can we learn about the medium on different length scales?

• Standard answer: match final (reconstructed) p_T

Standard answer: • match final (reconstructed) p_T

• Significant biases from migration of jets to lower energy

- Significant biases from migration of jets to lower energy
- Strongly emphasizes jets which are modified least

- Significant biases from migration of jets to lower energy
- Strongly emphasizes jets which are modified least

Often requires significant theory input to interpret measurements

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

• Another answer: match in (effective) cumulative jet crosssection

$$\sigma^{\text{eff}} = \sigma^{\text{pp}}, \sigma^{\text{HI}} / \langle T_{AA} \rangle$$
$$\Sigma^{\text{eff}}(p_T) = \int_{p_T}^{\infty} dp_T \frac{d\sigma^{\text{eff}}}{dp_T}$$

Interpretation of R_{AA} and Q_{AA} is significantly different...

Average jet loss per p_T

Average p_T loss per jet

That was Q_{AA} -- what about p_T^{quant} ?

Quenched and initial p_T have same ordering

Energy loss is...

Energy loss is...

Energy loss is...

In this limit, quantile matching gives equivalent jets in p-p and A-A

Energy loss is...

How does quantile matching work in the more realistic case?

How to quantify that?

Di-jets

How to quantify that?

How to quantify that?

Probe of p_T^{jet} in data

Probe of p_T^{jet} in Monte Carlo

Quantile matching approximates initial p_T of A-A jets

Z+jet

Quantile matching approximates initial p_T of A-A jets

Z+jet

Di-jets

Quantile matching approximates initial p_T of A-A jets

Z+jet

Di-jets

Quantile procedure does not undo energy loss fluctuations

Application to modification observables

Application to modification observables

Application to modification observables

• Sensitivity to matching indicates significant jet p_T migration effects

• Demonstrated two new observables: Q_{AA} and p_T^{quant}

 Q_{AA} :

Contains different information about the spectra than R_{AA}

 Q_{AA} :

Contains different information about the spectra than R_{AA}

• In particular, less sensitive to $low-p_T$ part of spectrum

Q_{AA}:

Contains different information about the spectra than R_{AA}

• In particular, less sensitive to $low-p_T$ part of spectrum

Theoretical clarity

Q_{AA}:

Contains different information about the spectra than R_{AA}

• In particular, less sensitive to $low-p_T$ part of spectrum

Theoretical clarity

• Interpretation as average energy loss

 Q_{AA} :

Contains different information about the spectra than R_{AA}

• In particular, less sensitive to $low-p_T$ part of spectrum

Theoretical clarity

- Interpretation as average energy loss
- does not require convolving theory results with p-p spectrum

 p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

 p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

• p_T^{quant} is similar on average to the initial p_T of a jet before quenching

p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

• p_T^{quant} is similar on average to the initial p_T of a jet before quenching

Comparing observables at the same p_T^{quant} partially accounts for bin migration

 p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

• p_T^{quant} is similar on average to the initial p_T of a jet before quenching

Comparing observables at the same p_T^{quant} partially accounts for bin migration

 p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

• p_T^{quant} is similar on average to the initial p_T of a jet before quenching

Comparing observables at the same p_T^{quant} partially accounts for bin migration

 p_T^{quant} :

Horizontal shift of spectrum gives a proxy for the initial p_T of a heavy-ion jet

• p_T^{quant} is similar on average to the initial p_T of a jet before quenching

Comparing observables at the same p_T^{quant} partially accounts for bin migration

• Can further constrain models

