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Challenges in Engineering Design

The society demands new products of better quality,
functionality, usability, etc.!

I Many choices at each step.

I Complicated and high dimensional.

I Difficult for individuals to reason
about.

I Prone to human bias.

Optimization is a challenging task in new products
design!
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Example: Deep Neural Network for object recognition.

Parameters to tune: Number of neurons ( Integer-Valued ),
number of layers ( Integer-Valued ), learning-rate, activation
function ( Categorical-Valued ), etc.
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Optimization Problems: Common Features

I Very expensive
evaluations.

I The objective is a
black-box.

I The evaluation can be
noisy. 0 1

−1

0

1

Bayesian optimization methods can be used to solve
these problems!
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Bayesian Optimization in Practice
objective

1. Get initial sample.

2. Fit a model to the data:

p(y |x,Dn) .

3. Select data collection strategy:

α(x) = Ep(y |x,Dn)[U(y |x,Dn)] .

4. Optimize acquisition function α(x).

5. Collect data and update model.

6. Repeat!

What if, instead of being built for every
point, the acquisition function is built

from a combination of Q points?
Parallel Setup.
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Several Objectives and Constraints
Optimal design of hardware accelerator for neural network
predictions.

Goals:

I Minimize prediction
error.

I Minimize prediction
time.

Constrained to:

I Chip area below a value.

I Power consumption below a
level.

a

1 Prediction
   speed

22Prediction 
error

Energy 
consumption Chip area

Challenges:

I Complicated constraints.

I Conflictive objectives.
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Constrained Multi-Objective Optimization

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_1(x)

−4
−2
0

2

4

Objective 1

−4

−2

0

2

4

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_2(x)

−4
−2
0

2

4

Objective 2

−4

−2

0

2

4

8/13



Constrained Multi-Objective Optimization

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_1(x)

−4
−2
0

2

4

Objective 1

−4

−2

0

2

4

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_2(x)

−4
−2
0

2

4

Objective 2

−4

−2

0

2

4

xx xx xxxxx xx xxxxxx xxx xxxxx xxx xxxxxx xxxxx xx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto Set (Input space)

····································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································

xx xx xxxxx xx xxxxxx xxx xxxxx xxx xxxxxx xxxxx xx

8/13



Constrained Multi-Objective Optimization

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_1(x)

−4
−2
0

2

4

Objective 1

−4

−2

0

2

4

x_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2
0.4

0.6
0.8

1.0

f_2(x)

−4
−2
0

2

4

Objective 2

−4

−2

0

2

4

xx xx xxxxx xx xxxxxx xxx xxxxx xxx xxxxxx xxxxx xx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto Set (Input space)

····································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································································

xx xx xxxxx xx xxxxxx xxx xxxxx xxx xxxxxx xxxxx xx

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

····························································
···············

−4 −2 0 2 4

−6
−4

−2
0

2
4

Pareto Frontier (value space)

xxx
xx

xxxx

xxx xxx

xxxx

xxx xxxx

xxx

xxxx xxxx

xxx

xxxx xxxx

xxx

xxxx

xxx

xxx

xx

xxx

xx

xx

x

·
x

Values for Domain Points
Values for Optimal Points

Pareto
Points

8/13



Constrained Multi-Objective Optimization
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Visualizing a GP under the proposed approach

Integer Variable

0
1

2

3

4

5
Re

al
 v

ar
ia

bl
e

0

1

2

3

4

5

G
P Posterior M

ean

−2

−1

0

1

Posterior Mean

−1

0

1

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

−1

0

1

0.0

0.2

0.4

0.6

0.8

1.0

Posterior Standard Deviation

Integer Variable

Re
al

 V
ar

ia
bl

e

Real Variable

0
1

2

3

4

5

Re
al

 v
ar

ia
bl

e

0

1

2

3

4

5

G
P Posterior M

ean

−2

−1

0

1

2

Posterior Mean

−2

−1

0

1

2

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

−2

−1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

Posterior Standard Deviation

Re
al

 V
ar

ia
bl

e

Real Variable

9/13



Applications of Bayesian Optimization

I Bayesian Networks are Probabilistic Graphical Models
that represent probability distributions. Gaussian Bayesian
Networks represent Multivariate Gaussians.

I There exist an exponential space of BN w.r.t nodes that can
represent data, I have used BO to reconstruct BN from data
searching in that space.

I I have used BO in an optimization of a Genetic Algorithm to
optimize the wave energy retrieved in a real experiment in
USA.

I I have also applied it in an undergraduate thesis in cooking
recipes with amazing results!
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Ideas for DarkMachines unsupervised learning project
I An initial approach would be to use a Variational Mixture of

Gaussians to see how many clusters of different objects
appear by using this technique.

I Bayesian inference automatically makes the trade-off
between model complexity and fitting the data. No
overfitting by considering a large K and maximizing the
lower bound!
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Ideas for DarkMachines unsupervised learning project

I This technique could be refined using Bayesian
Optimization having in count not only one but several
objectives and constraints.

I Gaussian Processes have also been applied for unsupervised
learning with amazing results with the Gaussian Process
Latent Variable Model (and related approaches) that I think
that would be a more advanced approach than the
Variational Mixture of Gaussians.
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