

Magboltz Updates on N₂O, CO₂, NH₃, Alcohols and HFOs

Özkan ŞAHİN¹, Stephen BIAGI¹ and Rob VEENHOF^{1,2}

¹Bursa Uludağ University, Physics Department, Bursa – TURKEY ²RD51 CERN

N₂O Update (Magboltz 11.4)

Ionisations
Attachments
Vibrations
Rotations
Excitations
Elastic

- The gas is slightly attaching even in mixtures (at low E field).
- Possible uses
 - Radiation hard gas;
 - dark matter or double beta decay where the drift of the negative ions give the approximate z position in TPCs.

RD51 Mini-Week, 4-6 December 2018, CERN

CO₂ Update (Magboltz 11.5)

- Small change in the CO₂ vibrational cross section to get agreement with the CMS drift veolocity data measured in Ar/CO₂ 85/15 mixture used in muon chamber
 - ✤ Magboltz prediction was low by 0.6 % of the drift velocity
 - ✤ V(001) vibration x-section scaled by a factor of 0.975 (2.5%)
 - ✤ Now, increase for Magboltz drift veolocity by 0.5 %,
 - ✤ Error in experimental data was ± 0.25 %
- Such a small change is not expected to effect on the agreement with other transport parameters
 - Best way to check with systematic gas gain fits
 - Townsend coefficients,
 - Ionisations,
 - Excitations

Gain measurements and fits in Ar-CO2

- Dashed lines: without corrections
- Points: experimental gas gains,
- ✤ Thick lines: final fits with Penning and feedback corrections.

RD51 Mini-Week, 4-6 December 2018, CERN

Penning correction

$$G = e^{\int \alpha_{Pen}(E(r)) \, dr}$$

Ar* + CO₂ → Ar + CO₂⁺ + e⁻
Ar* 3p⁵3d (13.8 eV) and higher level excitations can ionise CO₂ (13.77 eV)

$$\alpha_{Pen} = \alpha \left(1 + r_{Pen} \frac{f_{Ar}^{exc}}{f_{mix}^{ion}} \right)$$

Feedback correction for the overexponential increases in gas gain

$$G_{total} = G / (1 - \beta G)$$

Energy transfer probabilities (Magboltz 9.01)

Numerator: increase the ionizations
Denominator: excitation loses

$$r_{Pen}(p,c) = \frac{a_5 p^2 (1-c)^2 + a_1 p c}{a_6 p^2 (1-c)^2 + p c} + \frac{a_4 c}{a_6} + \frac{a_3}{a_6}$$

 $Ar_2^*-CO_2$ Ar^*-CO_2 $Ar^*-\gamma$

- 1) Excimers
- 2) Collosional ionizations
- 3) Radiative energy transfers

Plot and calculations (Magboltz 9.01):

Ö. Şahin, T.Z. Kowalski, A comprehensive model of Penning energy transfers in $Ar-CO_2$ mixtures, JINST 12 C01035 (2017).

Energy transfer mechanisms

- ★ a₁: collisional ionization efficiency $Ar^* + CO_2 \rightarrow Ar + CO_2^+ + e^-$
- ★ a₂: decay by emitting photons $Ar^* → Ar + γ$
- ★ a₃: photo-ionization $γ + CO_2 → CO_2^+ + e^-$
- * $a_3/a_2 = 0.114 \pm 0.043$ radiative transfer efficiency
- * a_4 : concentration dependence of the radiative transfer efficiency

- ★ a₅: ionization with argon excimers: $Ar_{2}^{+} + Ar^{*} \rightarrow Ar_{2}^{+} + Ar + e^{-}$ $Ar_{2}^{+} + Ar_{2}^{+} \rightarrow Ar_{2}^{+} + Ar + Ar + e^{-}$ $Ar_{2}^{+} + Ar \rightarrow 2Ar + Ar^{+} + e^{-}$
- a₆: excimer formation probability
 in Ar* Ar Ar collisions

 $Ar^* + Ar + Ar \rightarrow Ar_2^* + Ar$

* $a_5/a_6 \approx 9$ % of the created excimers contribute to the total ionizations

We widence for the Hornbeck-Molnar ionisations $Ar^* + Ar \rightarrow Ar_2^+ + e^-$

Magboltz 9.01 and 11.6 Calculations: Transfer rates

- Magboltz 11.6 gives almost same transfer rates in 1 %, 4 % and 11 % CO₂ mixtures
- ✤ Higher rates in 2% CO₂ with Magboltz 11.6
- Lower rates in 6 %, 30 %, and 50 % CO_2

RD51 Mini-Week, 4-6 December 2018, CERN

!!! No systematic decreases or increases **!!!**

Modelling: Transfer rates derived from the latest version lead to bigger drops at the highest pressures

Comparision of the model parameters

Parameter	Magboltz 9.01	Magboltz 11.6	1
a ₁	$0.627898 \ \pm 0.018083$	$0.613603 \ \pm 0.020611$	
\mathbf{a}_2	$0.041394 \ \pm 0.008297$	$0.036893 \ \pm 0.008424$	
a ₃	$0.004716 \ \pm 0.001512$	$0.003960 \ \pm 0.001457$	
$\mathbf{a_4}$	$0.001562 \ \pm 0.017566$	$0.003924 \ \pm 0.020341$	
a ₅	$0.002422 \ \pm 0.001171$	$0.002942 \ \pm 0.001272$	1
a ₆	$0.027115 \ \pm 0.005836$	$0.030677 \ \pm 0.006837$	

- Decrease on first 3 parameters,
- All the new parameters (derived from Magboltz 11.6) are in the range of errors found for Magboltz 9.01, except parameter a₂
- ✤ No particular change is seen in the transfer rates by using Magboltz 11.6
 - Confirms that transport parameters is not affected with a small update in one of the vibrational x-section (V001)

RD51 Mini-Week, 4-6 December 2018, CERN

NH₃ Update (Magboltz 11.6)

- ✤ The gas is slightly attaching,
- ✤ Has very small diffusion
- 2004 cross section data fitted •••
- V. Lisovskiy et. al, • Electron drift velocity in NH₃ in strong electric fields determined from rf breakdown curves, J. PHYS. D 38 (2005) 872.

- NOW
 - Includes dissociation above ionisation energy
 - improved angular distribution for rotational states (120 rotational levels)
 - ✤ angular distribution for dipole excitation

RD51 Mini-Week, 4 – 6 December 2018, CERN

Next

- ✤ Alcohols:
 - Methanol (CH₃OH), 1999 3^*
 - ✤ Almost finished
 - Very small diffusion and almost no attachment
 - Can be used in high accuracy drift chambers
 - \bigstar Ethanol(C2H5OH),19993* \bigstar Propanol(C3H7OH),19993*
 - Hydrofluoroolefins (HFOs), eco friendly gas
 - There is little electron scattering data,
 - Any attempt will likely have large errors since only scaling from similar molecules will probably be the only way to proceed.