Bayesian analysis of Muon tomography data

RD51 Mini-Week

Christopher Filosa (CEA/DRF/IRFU/DPhN)

DE LA RECHERCHE À L'INDUSTRIE

1

Looking through objects

And reconstructing their volume

Non destructive imaging

Slice for this plan

- **● Good spatial resolution**
- **● High level of contrast**

Non destructive imaging

Non destructive imaging

Expectations

- **● High power of penetration (~100m)**
- **● Harmless**
- **● For high opacity object**
- **● Free**

Close encounters of the Third Kind

A permanent cosmic bombing raid

A cosmic shower

Known cosmic accelerators : Quasars, Active

galaxies, Remanent supernovae, ... entitled and the extended protons and helium.

A cosmic shower

Muon flux at ground : 150/m²/s \rightarrow cos(θ)² distribution

Mean Energy \sim 4GeV \implies Kinetic energy of grain of sand at 1m/s

Celerity \sim c

Lifetime ~ 2µs

Natural radiation, free and harmless !

MicroMegas detectors

From fundamental research to social applications

2D Readout bulked resistive Micromegas

- \bullet 50 x 50 cm² active surface
- 3 strip layers
	- resistive (X) (482 μ m pitch and 380 μ m strips)
	- Y readout (482 μ m pitch and 100 μ m strips)
	- X readout (482 μ m pitch and 380 μ m strips)
- **Bulk technology**
- Resistive ink spread on PCB
	- Serigraphic process
	- Integrated resistivity ~ few hundred of $k\Omega$

Genetic multiplexing

Multiplexing layout

particle

Reduction of costs and simplified electronic output

- 1037 strips read by 61 channels (reduction factor 17)
- Doublet of channel are connected to a unique doublet of consecutive strips
- Use signal spread over strips
- Multiplexing factor is adjustable w.r.t. flux inside the detector

Muon Tomography / Muography

Different modes for several applications

DIAPHANE Project (2016)

Two modes of muography

Deviation

Transmission

 $\theta_{x,in}$

- Coulomb diffusion
	- deflection angle depends on density
	- 10 cm of lead \sim 1 \degree of deflection
- 3D Imaging
- Use for homeland security
- Spatial resolution is drastic
- **Faster than transmission**

- Muon survival probability depends on the density
	- ➞ A density map can be made from the muon flux
	- **Volcanoes**
	- ➞ Geological prospection
- \bullet Muon flux at ground : 1 muon/cm²/mn
	- ➞ Tradeoff between sensitivity and acquisition time
	- ➞ Better precision can extract the most information of each muon

Two modes of muography Deviation

Transmission

S.Bouteille (2017, Thesis)

Detection of defaults

Imaging faults in a concrete slab

Imaging faults in a concrete slab

➞ Two mode tested : transmission and absorption (deviation not adapted. Not dense enough)

New mode in Tomomu : absorption

Relative muons excess in transmission = S $_{_1}/$ S $_{_2}$ \to Object with high density (pyramids, volcanoes, buildings) Relative muons excess in absorption = S₁/(S₁+ S₀) \rightarrow Object with low/intermediate density

Results - Simulations

- $H0$: M and N are distributed with the same Poisson distribution with λ.
- H1 : M and N are distributed with differents Poisson distribution (λ and μ)

 $f(M|N,\lambda)$

Imaging faults in a concrete slab

Two positions allowed for the void Symmetry by 180° rotation

1000 mm

- Analysis done between I vs II and I vs III
	- Detectors were moved by 15cm
	- No faults appeared after dividing the two histograms
	- Blurring due to acceptance (geometry and efficiency) and diffusion of muons in the concrete slab

Imaging faults in a concrete slab

Two position allowed for the void Symmetry by 180° rotation

1000 mm

- Analysis done between I vs II and I vs III
	- ➡ Comparison shows a significant difference
	- the fault moved by 15cm as we hoped

Inverse problem

Direct problem

Parameters $\mathbf{p} = (\rho(x))$ **for x in object)** Data **d** = (($N_{\phi 1}$, N_{T1}), ..., ($N_{\phi d}$, N_{Td}))

$$
\mathcal{M}: \mathcal{P} \to \mathcal{D}
$$

$$
\mathbf{p} \to \mathbf{d} = \mathbf{M}.\mathbf{p}
$$

Inverse problem

 $\mathcal{M} : \mathcal{P} \longrightarrow \mathcal{D}$ $p \rightarrow d = M.p$ **Parameters** $\mathbf{p} = (\rho(x))$ **for x in object)** Data **d** = $((N_{\phi_1}, N_{T_1}), ..., (N_{\phi_d}, N_{T_d}))$ **INVERSION**

existence, uniqueness and stability

 $\mathcal{N} \colon \mathcal{D} \to \mathcal{P}$ $d \rightarrow p = N.d$

Resolution by minimisation

N φi

N φi Estimated by Monte-Carlo simulations

Parameters $\mathbf{p} = (\rho_1, \dots, \rho_N)$ Data **d** = $((N_{\phi_1}, N_{T_1}), ..., (N_{\phi_d}, N_{T_d}))$

 d_{ij} = path travelled by muons in the voxel j for the LOR i (cm)

 $\rho_{j}^{}$ = density in the voxel j (g.cm⁻³)

 O_i = opacity along the LOR i (g.cm⁻²) = $\Sigma_j d_{ij} \rho_j$

Inversion = Find $\rho \in \mathbb{R}^N$ such as **|| D** ρ **- O ||2 is minimal**

Conclusions

● Muography

- \rightarrow A promising non-invasive technique for imaging and scanning objects of different types and opacities
- \rightarrow Development of robust and stable detectors
- \rightarrow R&D on gas degradation and gas consumption

● Reconstruction

- \rightarrow Detection of faults in concrete slab with a new method
- \rightarrow Work in progress : inverse problem

THANKS

DE LA RECHERCHE À L'INDUSTRIE

