Gain and Stability Behaviour of Carbon Coated GEMs RD51 Mini-Week **CERN**

Serhat Atay Amir Alfarra Ivor Fleck

Department of Physics University of Siegen

4 December 2018

SPONSORED BY THE

ederal Ministry and Research

Outline

[Introduction](#page-2-0)

- [Diamond Like Carbon \(DLC\) Coated GEM](#page-2-0)
- **[Coating Procedure](#page-3-0)**

[Measurements](#page-4-0)

- **[AFM Analysis](#page-4-0)**
- **[Gain of DLC GEMs](#page-6-0)**
- **[Environmental Parameters](#page-7-0)**
- **•** [Turn on effect](#page-10-0)

Diamond-like Carbon (DLC) Coated GEM **CoTPC**

• Motivation

- \triangleright Reduce of discharge probability by coating sharp edges and kapton inside the holes
- \triangleright Establishment of well defined electric field within the hole
- Increase of maximum safe gain voltage (and gain)
- Three batches of coating with different thicknesses
	- \blacktriangleright 50 nm, 100 nm, 300 nm

Cross section of a GEM* Surface of a DLC GEM

*A. Alfarra, Master Thesis, October 2018

Serhat Atay (Uni Siegen) [Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 3 / 13

A Time Projection Chamber for a Future Linear Collider

Coating Procedure

- Coatings done by Fraunhofer Institut für Oberflächentechnik using Plasma assisted Chemical Vapor Deposition (PACVD) procedure.
	- \blacktriangleright In a vacuumed chamber
	- ▶ Hexamethyldisiloxane (HMDSO) for a-C:H:Si:O (SICON) coating
	- \blacktriangleright High electric field to break HMDSO into fragments
- Thickness control by deposition time

AFM Analysis (Preliminary)

- Samples for analysis
	- \triangleright **Additional coated GEMs** in the same coating process of DLC GEMs for AFM analysis
	- ► Coating roughness is \sim 5-10nm
	- Coating thickness measurement is under study

Test Chamber in Siegen

- **•** Motivation: Smaller drift distance, higher drift fields.
- Small chamber (120 mm \times 184 mm)to measure the gain of GEMs.
- Gas mixture: $Ar CO₂ (80\% 20\%)$ mixture.
- 5.9 keV X -ray source (^{55}Fe) for primary ionization.
- Drift field: 0.5 kV/cm, induction field: 2kV/cm. \bullet
- **O** Pressure: Absolute air pressure
- **O** Temperature: Room temperature

*Amir Alfarra.

Serhat Atay (Uni Siegen) [Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 6/13

Gain of DLC GEMs

- Gains corrected to 1 atm and 300K by coefficients from Garfield $++$ simulation
- **o Lower gain at same voltage** for coated GEMs
- Highest gain $($ > 1000 w/o correction) with 50nm coated GEMs.
- The thicker the thickness, the lower the gain at same voltage.
- Maximum safe gain voltage for all coated GEMs: 510V

*A. Alfarra, Master Thesis, October 2018

[Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 7 / 13

Environmental Parameters

Environmental parameter correction: Simulations→Measurements

Effects of Environmental Parameters

ö

100nm SICON GEM @480V 100nm SICON GEM @480V

- Results from 100nm SICON GEM @480V
- \bullet 2 different slopes depending on T/P trend.
	- \triangleright Low slope when T/P decreases
	- \triangleright High slope when T/P increases
- Why different slopes of T/P vs. gain?

Effects of Environmental Parameters

ö

CERN GEM @430V CERN GEM @430V

- Results from CERN GEM @430V
- \bullet 2 different slopes depending on T/P trend.
	- \triangleright Low slope when T/P decreases
	- \triangleright High slope when T/P increases
- Why different slopes of T/P vs. gain?

Turn on effect

Gain during voltage change 100nm SICON GEM

- Each point is 1 minute of spectrum
- When voltage is
	- \triangleright increased, gain increases higher than its new equilibrium then stabilizes.
	- \triangleright decreased, gain decreases lower than its new equilibrium then stabilizes.
- Is this behaviour expected for GEMs?

Serhat Atay (Uni Siegen) [Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 11 / 13

IVERSITÄT

Turn on Effect

- \bullet Turn on effect comparison for CERN GEM and 100nm SICON **GEM** after voltage change
- **CERN GEM doesn't have turn on effect**
- SICON GEM has turn on effect \sim 2% for 10V change

Summary

- CERN GEMs have been DLC coated by PACVD method with 3 different thicknesses (50nm, 100nm, 300nm).
- Roughness is ∼5-10nm.
- **Thickness measurement** of coatings is under investigation.
- With DLC coating, lower gain is achieved at same voltage, but higher voltages are accessible to reach x5 gain than in CERN GEM.
- The thicker the coating, the lower the gain at same voltage.
- Enviromental parameters (temperature and pressure) affect the gain differently (even for CERN GEMs) during increase and decrease of T/P . Gain changes slower when T/P is decreasing.
- After voltage change, gain of the SICON GEM instantly overshoots and undershoots, then stabilizes.

Backup

Pressure Adjustment

- Assumption for gain adjustment:
	- \blacktriangleright $G = e^{\alpha x}$ is valid
	- $\rightarrow \alpha = A \rho e^{-B \rho/E} \propto \rho$ is valid
- Pressure adjustment fit function: $G = e^{sp+c}$
	- \blacktriangleright s: slope
	- \blacktriangleright c: constant

Fit on simulations of ceramic GEM at 740 V

Gain adjustment (at 1 atm):

 $G_{corr} = \frac{G_{meas}(p)}{e^{sp+c}}$ e^{sp+c}

Temperature Adjustment

- Adjustment function by fitting simulation data
- **•** Temperature adjustment fit function: $G = e^{sT+c}$
	- \blacktriangleright s: slope
	- c: constant

Gain adjustment (at 299.5 K):

 $G_{corr} = \frac{G_{meas}(T)}{e^{sT+c}}$ e^{sT+c}

Serhat Atay (Uni Siegen) [Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 16 / 13

Gas System in Siegen

A Time Projection Chamber for a Future Linear Collider

- The gas system includes a gas mixing system with desired percentages and a small chamber to monitor gas stabilization inside the experimental chamber
- After mixing process, gas mixture flows through the test chamber and/or the TPC prototype
- Later, the gas mixture flows to another chamber where we can monitor gas stabilization before it is released to air.

Serhat Atay (Uni Siegen) [Gain and Stability Behaviour of DLC GEMs](#page-0-0) 4 December 2018 18 / 13

TPC Prototype in Siegen

In Siegen we have a cylindirical TPC prototype with 240mm diameter and 400mm length

- As readout detector, it has a TimePix chip which has 256×256 pixel resolution with $55\mu m \times 55\mu m$ pixel size
- The TimePix chip is controlled via FPGA card and signal is recorded in a matrix form which inludes possible tracks of electrons
- To be able to start primary ionization, a UV laser and beta-ray source are used in 3 entry holes.

A Time Projection Chamber for a Future Linear Collider

Pressure and Temperature Measurements to

- –Pressure of the gas mixture is slightly higher than absolute air pressure.
- –Thus, absolute air pressure can be used as gas pressure since pressure difference is negligible
- –Absolute air pressure is measured by a pressure sensor (MS5611-01BA01) –Temperature is measured built-in temperature sensor of the pressure sensor

International Linear Collider (ILC)

- Electron positron collider
- Foreseen length: 31 km*
- Center of mass energy: 250 GeV to 500 GeV (1 TeV)
- Two foreseen detectors, one of them being the International Large Detector (ILD)
- Time Projection Chamber (TPC) as the tracker for the ILD
	- \triangleright One of the candidates for electron multiplication: Gas electron multiplier (GEM)

Gain Calculation

Signal with 2 peaks (Argon escape peak and $55Fe$ peak).

• Number of primary electrons:

 $n_p = \frac{5900 \text{ eV}}{26 \text{ eV}} \times 0.80 + \frac{5900 \text{ eV}}{34 \text{ eV}} \times 0.20 = 216$

 \triangleright 26eV and 34eV : Average energy per ionization for Ar and CO₂ respectively.

• Thus, the gain: ratio of total (n_t) to primary (n_p) electron number $G = n_t \times \frac{1}{n_t}$ $\frac{1}{n_{\rho}}=\frac{Q_t}{e}\times\frac{1}{21}$ 216

Long Time Stability

- **•** The first important result of ceramic GEM: **Charge up effect**.
	- \triangleright CERN GEM gain starts already from 95% of maximum gain
	- \triangleright Gain stabilization of a ceramic GEM takes hours.

Garfield++ Simulations

A Time Projection Chamber for a Future Linear Collider

- Field maps from ANSYS.
- **•** Simulation with GEM specifications and geometries.
- Agreement within uncertanties (for the gains after stabilization)
- Pressure and temperature adjustment to compare measurements

 V_{GEM} vs. gain for ceramic GEM

Repeatability

Long time measurements **before** adjustment for 4 consecutive days with ceramic GEM at 740 V.

180 160 140 1999 y y y p p p p phythytytytytytytytyty 120 100 80 60 $-$ 1st Day 40 2nd Day $-$ 3rd Day 20 4th Day 0_0^1 200 400 600 800 1000 1200 Time (Min)

Long time measurements after adjustment at 740 V, 1 atm and 299.5 K.

Corrected Gain

- Pressure and temperature adjusted to 1 atm and 299.5 K.
- **•** Second important result: **Conditioning**
	- Increase of gain stabilization with consecutive measurements

UNIVERSITÄT

Repeatability

Distribution of gains from different measurements taken for 4 months of period

• Mean of the distribution of the adjusted gains (at 1 atm and 299.5 K) from different measurements: 125

• Variation within 68% inclusion area: $\sigma/\mu = 4.9\%$

Achievable Maximum Gain

Achievable maximum voltage without discharges

- \triangleright for CFRN GFM: 450 V
- \triangleright for ceramic GFM: 820 V
- **•** Gain at achievable voltage without discharges
	- \triangleright for CERN GEM: 178
	- \triangleright for ceramic GEM: 586

Ceramic GEM Characterization

- Long time stability measurements
	- \triangleright Operation stability
	- \triangleright Gain stability
- Repeatibility of measurements
	- \blacktriangleright Comparison of measurements
		- \star Challenges in comparison due to varying pressure and temperature
		- \star Adjustment of the gain to a chosen pressure and temperature using $Gartield++$ simulation data
- Achievable maximum voltage and gain

