Gain and Stability Behaviour of Carbon Coated GEMs RD51 Mini-Week CERN

Serhat Atay Amir Alfarra Ivor Fleck

Department of Physics University of Siegen

4 December 2018

SPONSORED BY THE

Federal Ministry of Education and Research

Outline

Introduction

- Diamond Like Carbon (DLC) Coated GEM
- Coating Procedure

Measurements

- AFM Analysis
- Gain of DLC GEMs
- Environmental Parameters
- Turn on effect

Diamond-like Carbon (DLC) Coated GEM

Motivation

- Reduce of discharge probability by coating sharp edges and kapton inside the holes
- Establishment of well defined electric field within the hole
- Increase of maximum safe gain voltage (and gain)
- Three batches of coating with different thicknesses
 - 50 nm, 100 nm, 300 nm

Cross section of a GEM*

*A. Alfarra, Master Thesis, October 2018

Serhat Atay (Uni Siegen)

Surface of a DLC GEM' 4 December 2018

3 / 13

A Time Projection Chamber

for a Future Linear Collider

Coating Procedure

- Coatings done by **Fraunhofer Institut für Oberflächentechnik** using Plasma assisted Chemical Vapor Deposition (PACVD) procedure.
 - In a vacuumed chamber
 - Hexamethyldisiloxane (HMDSO) for a-C:H:Si:O (SICON) coating
 - High electric field to break HMDSO into fragments
- Thickness control by deposition time

AFM Analysis (Preliminary)

- Samples for analysis
 - Additional coated GEMs in the same coating process of DLC GEMs for AFM analysis
 - Coating roughness is ~5-10nm
 - Coating thickness measurement is under study

Test Chamber in Siegen

- Motivation: Smaller drift distance, higher drift fields.
- Small chamber (120 mm \times 184 mm)to measure the gain of GEMs.
- Gas mixture: Ar CO₂ (80% 20%) mixture.
- 5.9 keV X-ray source (⁵⁵Fe) for primary ionization.
- Drift field: 0.5 kV/cm, induction field: 2kV/cm.
- Pressure: Absolute air pressure
- Temperature: Room temperature

*Amir Alfarra

Gain of DLC GEMs

- Gains corrected to **1** atm and **300K** by coefficients from Garfield++ simulation
- Lower gain at same voltage for coated GEMs
- Highest gain (>1000 w/o correction) with 50nm coated GEMs.
- The thicker the thickness, the lower the gain at same voltage.
- Maximum safe gain voltage for all coated GEMs: 510V
 *A Alfarra, Master Thesis, October 2018

Serhat Atay (Uni Siegen)

Gain and Stability Behaviour of DLC GEM

Time Projection Chamber

Environmental Parameters

• Environmental parameter correction: Simulations -> Measurements

Effects of Environmental Parameters

100nm SICON GEM @480V

100nm SICON GEM @480V

- Results from 100nm SICON GEM @480V
- 2 different slopes depending on T/P trend.
 - Low slope when T/P decreases
 - High slope when T/P increases
- \bullet Why different slopes of T/P vs. gain?

Effects of Environmental Parameters

CERN GEM @430V

CERN GEM @430V

- Results from CERN GEM @430V
- 2 different slopes depending on T/P trend.
 - Low slope when T/P decreases
 - ► High slope when T/P increases
- Why different slopes of T/P vs. gain?

Turn on effect

Gain during voltage change 100nm SICON GEM

- Each point is 1 minute of spectrum
- When voltage is
 - ▶ increased, gain increases higher than its new equilibrium then stabilizes.
 - decreased, gain decreases lower than its new equilibrium then stabilizes.
- Is this behaviour expected for GEMs?

Serhat Atay (Uni Siegen)

Gain and Stability Behaviour of DLC GEM

VERSITÄT

Turn on Effect

- Turn on effect comparison for CERN GEM and 100nm SICON GEM after voltage change
- CERN GEM doesn't have turn on effect
- \bullet SICON GEM has turn on effect $\sim 2\%$ for 10V change

Summary

- CERN GEMs have been DLC coated by PACVD method with 3 different thicknesses (50nm, 100nm, 300nm).
- Roughness is \sim 5-10nm.
- Thickness measurement of coatings is under investigation.
- With DLC coating, lower gain is achieved at same voltage, but higher voltages are accessible to reach x5 gain than in CERN GEM.
- The thicker the coating, the lower the gain at same voltage.
- Environmental parameters (temperature and pressure) affect the gain differently (even for CERN GEMs) during increase and decrease of T/P. Gain changes slower when T/P is decreasing.
- After voltage change, gain of the SICON GEM instantly overshoots and undershoots, then stabilizes.

Backup

14 / 13

Pressure Adjustment

- Assumption for gain adjustment:
 - $G = e^{\alpha x}$ is valid
 - $\alpha = Ape^{-Bp/E} \propto p$ is valid
- Pressure adjustment fit function: G = e^{sp+c}
 - ► s: slope
 - c: constant

Fit on simulations of ceramic GEM at 740 V $\,$

• Gain adjustment (at 1 atm):

 $G_{corr} = \frac{G_{meas}(p)}{e^{sp+c}}$

V_{GEM} (V)	slope (Bar^{-1})	constant
680	-6.44±4.5%	6.53±4.5%
720	-6.59±4.4%	6.68±4.4%
740	-6.72±4.5%	6.81±4.5%
760	-6.69±4.8%	6.78±4.8%

GEM at different V_{GEM} U

UNIVERSITÄT SIEGEN

Temperature Adjustment

- Adjustment function by fitting simulation data
- Temperature adjustment fit function: $G = e^{sT+c}$
 - ► s: slope
 - c: constant

• Gain adjustment (at 299.5 K):

 $G_{corr} = \frac{G_{meas}(T)}{e^{sT+c}}$

V_{GEM} (V)	slope ($10^2 K^{-1}$)	constant
680	2.11±2.2%	-6.32±2.2%
720	2.2±2.1%	-6.59±2.1%
740	2.35±3%	-7.03±3%
760	2.39±5.4%	-7.15±5.4%

Serhat Atay (Uni Siegen)

Gain and Stability Behaviour of DLC GEN

Gas System in Siegen

A Time Projection Chamber for a Future Linear Collider

- The gas system includes a gas mixing system with desired percentages and a small chamber to monitor gas stabilization inside the experimental chamber
- After mixing process, gas mixture flows through the test chamber and/or the TPC prototype
- Later, the gas mixture flows to another chamber where we can monitor gas stabilization before it is released to air.

possible tracks of electrons

• To be able to start primary ionization, a UV laser and beta-ray source are used in 3 entry holes.

TPC Prototype in Siegen

In Siegen we have a cylindirical TPC prototype with 240mm diameter and 400mm length

- As readout detector, it has a TimePix chip which has 256×256 pixel resolution with $55\mu m \times 55\mu m$ pixel size
- The TimePix chip is controlled via FPGA card and signal is recorded in a matrix form which inludes

Pressure and Temperature Measurements

- -Pressure of the gas mixture is slightly higher than absolute air pressure.
- -Thus, absolute air pressure can be used as gas pressure since pressure difference is negligible
- -Absolute air pressure is measured by a pressure sensor (MS5611-01BA01) -Temperature is measured built-in temperature sensor of the pressure sensor

International Linear Collider (ILC)

20 / 13

- Electron positron collider
- Foreseen length: 31 km*
- Center of mass energy: 250 GeV to 500 GeV (1 TeV)
- Two foreseen detectors, one of them being the International Large Detector (ILD)
- Time Projection Chamber (TPC) as the tracker for the ILD
 - One of the candidates for electron multiplication: Gas electron multiplier (GEM)

*R. Diener, Physics Procedia, 00 (2012) 1-8

Gain Calculation

Signal with 2 peaks (Argon escape peak and ${}^{55}Fe$ peak).

• Number of primary electrons:

 $n_p = \frac{5900 \ eV}{26 \ eV} \times 0.80 + \frac{5900 \ eV}{34 \ eV} \times 0.20 = 216$

▶ 26eV and 34eV: Average energy per ionization for Ar and CO_2 respectively.

• Thus, the gain: ratio of total (n_t) to primary (n_p) electron number $G = n_t \times \frac{1}{n_p} = \frac{Q_t}{e} \times \frac{1}{216}$

Long Time Stability

• The first important result of ceramic GEM: Charge up effect.

- CERN GEM gain starts already from 95% of maximum gain
- Gain stabilization of a ceramic GEM takes hours.

Garfield++ Simulations

- Field maps from ANSYS.
- Simulation with GEM specifications and geometries.
- Agreement within uncertanties (for the gains after stabilization)
- Pressure and temperature adjustment to compare measurements

 V_{GEM} vs. gain for ceramic GEM

GEM	data	V_{GEM} (V)	P (Bar)	T (K)	Gain	$G_{\it sim}/G_{\it meas}$
CERN	experiment	390	0.987	298	59.64±2.17	
CERN	simulation	390	0.987	298	60.56±1.15	$1.015{\pm}0.056$
Ceramic	experiment	740	0.9875	299.5	$131.2{\pm}4.91$	
Ceramic	simulation	740	0.9875	299.5	124.6±3.13	$0.95{\pm}0.059$

Repeatability

Long time measurements before adjustment for 4 consecutive days with ceramic GEM at 740 V. Long time measurements after adjustment at 740 V, 1 atm and 299.5 K.

Time required for	1st Day	2nd Day	3rd Day	4th Day	3 Days Later
90% of max gain	258 min	132 min	93 min	69 min	189 min
95% of max gain	414 min	276 min	192 min	117 min	297 min

- Pressure and temperature adjusted to 1 atm and 299.5 K,
- Second important result: Conditioning
 - Increase of gain stabilization with consecutive measurements

Repeatability

Distribution of gains from different measurements taken for 4 months of period

 Mean of the distribution of the adjusted gains (at 1 atm and 299.5 K) from different measurements: 125

• Variation within 68% inclusion area: $\sigma/\mu = 4.9\%$

Achievable Maximum Gain

• Achievable maximum voltage without discharges

- for CERN GEM: 450 V
- for ceramic GEM: 820 V
- Gain at achievable voltage without discharges
 - for CERN GEM: 178
 - for ceramic GEM: 586

Ceramic GEM Characterization

- Long time stability measurements
 - Operation stability
 - Gain stability
- Repeatibility of measurements
 - Comparison of measurements
 - * Challenges in comparison due to varying pressure and temperature
 - $\star\,$ Adjustment of the gain to a chosen pressure and temperature using Garfield++ simulation data
- Achievable maximum voltage and gain

