

Large-area Micromegas with embedded resistors, a uniformity study

M. Chefdeville, LAPP, Annecy on behalf of the SCREAM Common Project consortium* RD51 mini-week, CERN, Dec. 4th 2018

(*)

- 1. CNRS/IN2P3/LAPP, M. Chefdeville, C. Drancourt, Y. Karyotakis, G. Vouters
- 2. Weizmann Institute of Science, S. Bressler, D. Shaked Renous, L. Moreli, P. Bhattacharya
- 3. NCSR Demokritos/INP, T. Geralis
- 4. CEA/IRFU, M. Titov
- 5. University of Aveiro, J. Veloso
- 6. University of Coimbra, F. Amaro

Overview

- Introduction
 - Embedded resistors & past results
- Experimental setup
 - New prototypes
 - Testbeam, August 2018
- Position scan
 - Data sample
 - Data analysis
- Results
 - Efficiency maps
 - Correlation with thresholds
- Outlook

Embedded resistors

- Principle: resistive pads \rightarrow resistor \rightarrow readout pad
 - Spark suppression & high-rate capability (NIMA 824 (2016) 510)
- R&D scope: LC PF-calorimetry or HL-LHC tracking
- First prototypes: $10 \times 10 \text{ cm}^2$ with Gassiplex RO
 - Response VS rate (Ohm's law, left plot)
 - Sparking VS resistance (threshold effect, right plot)
- Now: scale size up & build a small calorimeter

New prototypes

- Modif. of previous design used for 1x1 m² prototypes (Active Sensor Unit, ASU). Integrate inter-DIF board & remove flex connectors:
 - 28 MICROROC (x64 channels with 3 thr) \rightarrow 1792 pads of 1x1 cm² (with or w/o diodes)
 - 60 pins connector to DIF readout board, 2 HV connectors
- Productions shared between Micromegas and RPWELL:
 - in 2017: 5 ASU (3 with diodes + 2 without)
 - in 2018: 7 ASU (6 with + 1 without)

Shower axial symmetry \rightarrow circular matrix of pad r = 24 cm \rightarrow S = 0.18 m²

1x1 m² prototype NIMA 729 (2013) 90

New prototypes

- Modif. of previous design used for 1x1 m² prototypes (Active Sensor Unit, ASU). Integrate inter-DIF board & remove flex connectors:
 - 28 MICROROC (x64 channels with 3 thr) \rightarrow 1792 pads of 1x1 cm² (with or w/o diodes)
 - 60 pins connector to DIF readout board, 2 HV connectors
- Productions shared between Micromegas and RPWELL:
 - in 2017: 5 ASU (3 with diodes + 2 without)
 - in 2018: 7 ASU (6 with + 1 without)

Shower axial symmetry \rightarrow circular matrix of pad r = 24 cm \rightarrow S = 0.18 m²

Mechanical design

- Possibility to open the chamber (for now)
 - No glue but screws + o-ring for gas tightness
- Aluminum cover on top of the Bulk
 - 3 mm drift gap, 0.75 L volume
 - cathode = kapton + Cu-kapton foils
 - add steel support for the DIF board
 - add grounding steel plate on the backside

Testbeam, August 2018

- H4 RD51 beam line, 2 weeks, downstream of all setups
 - Structure with 3 Micromegas + 1 RPWELL on XY-table
 - 2 triggers: 3 PMT or RD51 telescope placed right upstream
 - Gas mixture: Ar/CO_2 93/7 distributed in parallel
- Many thanks to RD51 for: gas & CAEN mainframe & slow control
- First week lost due to HV cathode contacts, smooth running then
- Main measurements
 - Mesh voltage scans (150 GeV/c μ & $\pi)$
 - Threshold & position scans (μ)
 - Rate scans (π with & w/o absorbers)
- ASIC operating thresholds : 1 fC, 3 fC & 13 fC
- Operating voltages = 400-540 V
 - \rightarrow G = 2x10² 2x10⁴

μΜ1 μΜ3

7

Hit selection, basics

- MICROROC: 5 MHz clock, hits stored in memory with BCID
- 2 operating modes of similar efficiency:
 - TB-like (ext. trigger): RO when trigger (resets when full) \rightarrow useful with few layers, events accumulate @ fixed $\Delta t = t_{RO} t_{HIT}$
 - ILC-like (int. trigger): RO when memory full \rightarrow with several layers, events id'ed as peaks in time

PS: @ 500 V, expect G = 6000, to be calibrated with threshold scan data

Hit selection, basics

- MICROROC: 5 MHz clock, hits stored in memory with BCID
- 2 operating modes of similar efficiency:
 - TB-like (ext. trigger): RO when trigger (resets when full) \rightarrow useful with few layers, events accumulate @ fixed $\Delta t = t_{RO} t_{HIT}$
 - ILC-like (int. trigger): RO when memory full \rightarrow with several layers, events id'ed as peaks in time

Hit selection, basics

- MICROROC: 5 MHz clock, hits stored in memory with BCID
- 2 operating modes of similar efficiency:
 - TB-like (ext. trigger): RO when trigger (resets when full) \rightarrow useful with few layers, events accumulate @ fixed $\Delta t = t_{RO} t_{HIT}$
 - ILC-like (int. trigger): RO when memory full \rightarrow with several layers, events id'ed as peaks in time

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test $4^{\mbox{\tiny th}}$ one locally
- Total selection efficiency: ϵ (clean) x ϵ (telescope) x ϵ (MIP) x ϵ (ROI) x ϵ (track)

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test 4th one locally
- Total selection efficiency: ϵ (clean) x ϵ (telescope) x ϵ (MIP) x ϵ (ROI) x ϵ (track)

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test 4th one locally
- Total selection efficiency: $\varepsilon(\text{clean}) \times \varepsilon(\text{telescope}) \times \varepsilon(\text{MIP}) \times \varepsilon(\text{ROI}) \times \varepsilon(\text{track})$

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test 4th one locally
- Total selection efficiency: ϵ (clean) x ϵ (telescope) x ϵ (MIP) x ϵ (ROI) x ϵ (track)

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test 4th one locally
- Total selection efficiency: ϵ (clean) x ϵ (telescope) x ϵ (MIP) x ϵ (ROI) x ϵ (track)

- Data sample: 5x7 positions, >25k triggers each, 28x28 cm² (table range of motion)
- Data analysis: find track in 3 chambers, test 4th one locally
- Total selection efficiency: $\epsilon(clean) \times \epsilon(telescope) \times \epsilon(MIP) \times \epsilon(ROI) \times \epsilon(track)$

Edge effects: only₁₆ straight tracks pass.

Efficiency maps - errors

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of $5x5 \text{ cm}^2$
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Most of the pads have a <2% error @ low threshold.

This increases slightly for higher thresholds: 3% for thr1 and 4% for thr2.

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Efficiency maps - uniformity

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Efficiency maps - uniformity

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 7x7 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Efficiency maps - uniformity

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 7x7 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Correlations with threshold

- Similar correlation in 3 chambers
- For chamber #2 and #3: mistake in setting some ASIC thresholds

Hit multiplicity maps - values

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Hit multiplicity maps - uniformity

- For each track, the position in the test chamber is extra- or interpolated:
 - Efficiency & multiplicity are measured in a region of 5x5 cm²
- Plot only when $\sigma_\epsilon < 5\%$ with $\sigma_\epsilon = \sqrt{~[~\epsilon.(1-\epsilon)~/~N~]}$

Summary and outlook

- Three pad-readout Micromegas of 0.2 m² with embedded resistors and front-end electronics were constructed
 - Operational characteristics in line with earlier smaller prototypes (e.g. sparking)
 - Besides low gas gain area on one proto. & a few wrong chip settings:
 - the performance are good (>90% efficiency) and well uniform (1-2% RMS var. @ low thr.)

 \rightarrow The manufacturing process was succesfully applied on larger size.

- Now close to the conclusion of our work on embedded resistors
 - Analysis improvable: use off-trigger hits and thus full beam size \rightarrow wider area can be tested, especially by the edges
 - Looks at systematics (e.g. target region size)
 - Results will be integrated into our current draft paper for circulation before Xmas.
- These detectors, combined with large RPWELL and smaller Micromegas, formed a small calorimeter which was tested to low-energy hadrons in October at the PS
 - See report from Dan Shaked Renous in WG7 on Thursday morning