

Encapsulated Resistive-anode Micromegas TPC

test beam campaign (a) DESY 13/Nov ~ 28/Nov

4-6 December 2018 @ CERN

D. Attié, P. Colas, X. Coppolani, S. Emery-schrenk, S. Ganjour, T. Ogawa, H. Qi, M. Riallot, B. Tuchming, J. Timmermans, M. Titov,

and thanks to R. Diener, O. Schäfer, V. Prahl ...

preliminary plots

RD51 mini-work shop

Encapsulated Resistive-anode Micromegas

Resistive-anode Micromegas

Performance requirement for ILC : ~ 100 μ m spatial resolution

"T2K" gas gives small transverse diffusion because of
F4 which can make τ large (τ: mean free time between collisions)
under 4T magnetic field Dt ~ 30 µm/y/cm

Need sufficient #pads to get barycenter

=> spread charge and share with several pads.

• Encapsulated Resistive-anode Micromegas

Mesh is connected to ground.

Encapsulation shields against external noise

small signal can be acquired

Module-Module boundary keep homogeneity of E field ,

reduce ExB => Mitigates track distortions

under 4T magnetic field Dt \sim 30 um/Vcm (σ : limitation of pad size \sim width/V12)

Detector configuration

- Module Module size: $22 \text{ cm} \times 17 \text{ cm}$
 - 24 rows × 72 columns (1726 Pads)
 - Pad size: ~3 mm × 7 mm
- AFTER chip produced by Saclay https://doi.org/10.1109/TNS.2008.924067 for various kinds of detectors and gas mixtures different electronics gain
 - 25 MHz (50, 100 MHz) sampling frequency Peaking time 100 ns to 600 ns
- **Resistive anode** for dispersing charge

Diamond Like Carbon-coated kapton

Surface resistivity = 2.5 Mohm/sq is optimal when considering pad size, insulator thickness , and shaping time ...

=> sufficient charge spreading & protection for sparks

Carbon Loaded Kapton
 Diamond Like Carbon
 comparison => <u>150119 D.S.Bhattacharya AperoSPP</u>

Stacking a module is easy !

The situation of beam test

• with and without Magnetic-filed (B=1T)

Performance test

& module alignment without ExB effect

Module scan for uniformity: gain, $r\phi$ and z resolutions Test of track distortions by changing H.V of the center module

• 2PCO2 cooling with TRACI

TRACI=Transportable Refrigeration Apparatus for Co2 Investigation

Very stable operation during beam test. Keep the modules 28~30 °C

Mini Cooler FILE: x:\students\kkapusniak\TRACI\co2_100w_cms\Latest\CO2_100W_CMS_electr.vsd

Nice events

Cosmic_B=1T_Run6138_Evt121

FancyEvent_4M_Run6160_Evt46

Module status

• Less noise contribution

Dynamic range is 4024 ADC counts

Pedestal-RMS dist. measured under B=1T

• ~99.9% channels are active

Due to electric circuit error 2pads in each module are missing => can be modified in next production

1 ~4 missing pads because of disconnection

Accumulation of cosmic events

Charge spreading

Pad Response Function

 $\sigma = 1.4$ mm well suited for 3mm-wide to share amplified charge with a few pads

one obtains sigma ~ 1.4 mm

Dt under B=1T ~ 95 um/Vcm

https://indico.cern.ch/event/698927/contributions/2872364/

$$ho(\mathrm{r,t}) = rac{\mathrm{RC}}{2\mathrm{t}} \exp[-rac{-\mathrm{r}^2\mathrm{RC}}{4\mathrm{t}}]$$

R- surface resistivity C- capacitance/unit area

Gaussian spreading as a function of time with $\sigma_r =$ sqrt(2t/RC)

For R= 2.5 Mohm/sq, shaping 200 ns, 200 μ insulation in addition to the 50 μ m kapton,

H.V scan (optimization)

• $\sigma r \phi$ as a function of anode voltage (amplification)

 $\sigma r \phi$: width of a $\Delta = x_{track} - x_{hit}$ distribution

gain : reference Figure 5-2 in PhD:WANG_WENXIN (Fig 7-3 with 5GeV).

Hit charge vs Event Number with anode voltage = 370V

a sample run ($\sim 12 \text{ mins}$)

Uniformity of gain & point resolution over the module x=140 mm x=300 mm • Scan along the x-direction x=[120 mm ~ 300 mm] 10 points Gain : MP of gaussian conv. landau function. B=1T, Drift length ~ 70 mm Hit charge distribution to avoid being HitQ {Module==3&&Row==10&&NTracks==1} washed out χ^2 / ndf = 206.3 / 196 60 by diffusion width 291.8 ± 13.5 1171 ± 15.0 MP 40 $1.091e+05 \pm 2.282e+03$ area gausSigma -123.5 ± 47.2 20 • Focus on the center module (the other modules are off in the analysis) 8000 2000 4000 6000 0 Hit charge

Center region observes relatively higher charge? angle correction is not applied 250 300 position x

Track Distortions (2015 RA-MM beam test)

The inhomogeneity of the magnetic field (non-uniformity of material budget of magnet) the electric field in the detector (the anode/module gaps) => induce ExB effects => alter paths of drift electrons strongly.

12

Track Distortions (2018 Encapsulated RA-MM)

2018 beam test data same analysis condition

good connection between boundaries ! huge improvement !

Big distortion between module boundaries ~1 mm

Systematic effect on position determination in each row is corrected $\overline{\mathbf{\nabla}}$

Summary for now

- Performance test with the new high voltage scheme was tested @ test beam campaign in DESY during 13/Nov ~ 28/Nov for the shielding electronics, mitigation of the track distortions and flexibility of the HV settings.
- 4 detectors were almost perfectly working with the small noise contribution and without any gain drop due to micro discharges (for physics runs).
- The structure is observed on the uniformity of the hit charge distribution. This is non-uniformity of the resistive-anode, or other reason? under investigation...
- Huge improvement was observed for the track distortions as expected
- Analysis was just started !

14

See you next time ...

hopefully, for ILC-TPC development

Track Distortions (2018 Encapsulated RA-MM)

H.V of the center module was altered or killed (set to 0 V) to make sure how large distortion appear \Rightarrow large difference of potential is created.

(center module is set to 340V ~ 400V and 0V, drift distance 50 mm) The other modules are set to 380V

Track Distortions (2018 Encapsulated RA-MM)

H.V of the center module was altered or killed (set to 0 V) to make sure how large distortion appear \Rightarrow large difference of potential is created.

(center module is set to 340V ~ 400V and 0V, drift distance 50 mm) The other modules are set to 380V

Peaking time scan (optimization)

Drift length Z= 5 cm, B=1 T, Ed=230V/cm

Direct comparison is not easy due to different pulse shape

 $\sigma r \phi$: width of a $\Delta = x_{track} - x_{hit}$ distribution

it is necessary to tune parameters for pulse finding ...

 σz : width of a $\Delta = Z_{track} - Z_{hit}$ distribution

Things to do

- Gas condition : drift velocity, diffusion constant (not easy for transverse due to RA...) absorption of seed electrons ... phi angle dependence...
- Resolutions, and Neff which is #of electrons associating to resolution
 - Uniformity for module boundary (upper 2 modules)
- Alignment of the modules without B filed, dependence of each module, systematics ...

module difference

T0 (Z0) determination and drift velocities

Geometry scan (old module)

Drift velocity and diffusion (T2K gas)

If we require the azimuthal resolution of 100 μ m at z = 200 cm the diffusion constant (D), which is essentially the only free (controllable) parameter depending on the choice of gas mixture, needs to be smaller than 30 μ m/ \sqrt{cm} .

The diffusion constant of drift electrons under the influence of an axial magnetic field (B) is given by $D(B) = D(B = 0)/\sqrt{1 +}$ $(\omega\tau)^2$, where $\omega = e \cdot B/m$, the electron cyclotron frequency, and τ is the mean free time of drift electrons between collisions with gas molecules. Therefore we need a gas mixture in which D(B = 0) is small (cool) and τ is fairly large (fast) under a moderate drift field (E)!

- The diffusion constant D is related to the diffusion coefficient (D*) through D2 = 2D*/W, where W is the electron drift velocity.
- The electron drift velocity is given by W = e · E/m · τ with e (m) being the electron charge (mass). A large value of τ, therefore, means a fast gas.

