

Encapsulated Resistive-anode Micromegas TPC

test beam campaign @ DESY 13/Nov ~ 28/Nov

RD51 mini-work shop

4-6 December 2018 @ CERN

D. Attié, P. Colas, X. Coppolani, S. Emery-schrenk, S. Ganjour, T. Ogawa, H. Qi, M. Riallot, B. Tuchming, J. Timmermans, M. Titov,

 and thanks to R. Diener, O. Schäfer, V. Prahl …

preliminary plots

Encapsulated Resistive-anode Micromegas

・**Resistive-anode Micromegas**

Performance requirement for ILC : ~ 100 μm spatial resolution

"T2K" gas gives small transverse diffusion because of CF4 which can make τ large (τ: mean free time between collisions)

Need sufficient #pads to get barycenter

under 4T magnetic field Dt ~ 30 um/vcm (σ : limitation of pad size ~ width/v12)

・**Encapsulated Resistive-anode Micromegas**

Mesh is connected to ground.

Encapsulation shields against external noise

small signal can be acquired

Module-Module boundary keep homogeneity of E field,

reduce $ExB \Rightarrow$ Mitigates track distortions

Detector configuration

- Module size: $22 \text{ cm} \times 17 \text{ cm}$ ・**Module**
	- 24 rows \times 72 columns (1726 Pads)
	- Pad size: \sim 3 mm \times 7 mm
- ・**AFTER chip** produced by Saclay for various kinds of detectors and **gas mixtures** https://doi.org/10.1109/TNS.2008.924067 different electronics gain 25 MHz (50, 100 MHz) sampling frequency Peaking time 100 ns to 600 ns
- ・**Resistive anode** for dispersing charge

Diamond Like Carbon-coated kapton Stacking a module is easy!

Surface resistivity = 2.5 Mohm/sq **is optimal when considering pad size, insulator thickness, and shaping time ...**

• *Carbon Loaded Kapton* • *Diamond Like Carbon*

=> sufficient charge spreading & protection for sparks

comparison *=> 150119_D.S.Bhattacharya_AperoSPP*

The situation of beam test

Performance test

Module scan for uniformity: gain, rφ and z resolutions Test of track distortions by changing H.V of the center module CCI

& module alignment without ExB effect

・**with and without Magnetic-filed (B=1T)**

・**2PCO2 cooling with TRACI**

TRACI=Transportable Refrigeration Apparatus for Co2 Investigation compressor TT1100 and TT11000 and TT11000 and TT11000 and TT11000 and TT11000 and TT11000

Very stable operation during beam test. Keep the modules 28~30 °C \sim \blacksquare

Nice events

Cosmic_B=1T_Run6138_Evt121

FancyEvent_4M_Run6160_Evt46

Module status

Due to electric circuit error 2pads in each module are missing => can be modified in next production

Accumulation of cosmic events

Dynamic range is 4024 ADC counts

・**~ 99.9% channels are active**

・**Less noise contribution**

Pedestal-RMS dist. measured under B=1T

7

Charge spreading

・**Pad Response Function**

 $\sigma = 1.4$ mm well suited for 3mm-wide to share amplified charge with a few pads

one obtains sigma ~ 1.4 mm

Gaussian spreading as a function of time with $\sigma_{\rm r}=$ sqrt(2t/RC) \mathcal{L} spreading as a spreading spreading as \mathcal{L} Gaussian spreading as a

-
- For $R = 2.5$ Mohm/sq, shaping 200 ns, 200 μ insulation in addition to the 50 μ m kapton,

Dt under B=1T \sim 95 um/Vcm

https://indico.cern.ch/event/698927/contributions/2872364/

$$
\rho(\text{r},\text{t})=\tfrac{\text{RC}}{2\text{t}}\exp[-\tfrac{-\text{r}^2\text{RC}}{4\text{t}}]\quad \text{L}
$$

R- surface resistivity C- capacitance/unit area

H.V scan (optimization)

• σr $φ$ **as a function of anode voltage (amplification)**

 σ rφ : width of a $\Delta = x_{track} - x_{hit}$ distribution

Hit charge vs Event Number with anode voltage = 370V

a sample run (\sim 12 mins)

gain : reference Figure 5-2 in PhD:WANG_WENXIN (Fig 7-3 with 5GeV).

Uniformity of gain & point resolution over the module $x=140$ mm $x=300$ mm ・Scan along the x-direction $x=[120 \text{ mm} \sim 300 \text{ mm}]$ 10 points Gain : MP of gaussian conv. landau function. $B=1T$, Drift length \sim 70 mm Hit charge distribution to avoid being HitQ {Module==3&&Row==10&&NTracks==1} washed out χ^2 / ndf = 206.3 / 196 $60 \mid$ by diffusion width 291.8 ± 13.5 MP 1171 ± 15.0 $40²$ $1.091e+05 \pm 2.282e+03$ area gausSigma -123.5 ± 47.2 20 ・**Focus on the center module** ण
णोपभानमानना **(the other modules are off in the analysis)** 6000 8000 2000 4000 $\bf{0}$ Hit charge

 100 it $90 - 300$ $150 - 300$ $100 - 350$ $\frac{1}{\pi}$ position x \overline{Q} Center region observes relatively higher charge? angle correction is not applied?

1000

1200

1400

 $\frac{1600}{91}$
 $\frac{91}{91}$
 $\frac{1}{91}$
 $\frac{1}{91}$

Uniformity of gain & point resolution over the module

Track Distortions (2015 RA-MM beam test)

The inhomogeneity of the magnetic field (non-uniformity of material budget of magnet) the electric field in the detector (the anode/ module gaps) **=> induce ExB effects => alter paths of drift electrons strongly.**

Track Distortions (2018 Encapsulated RA-MM)

2018 beam test data same analysis condition

Systematic effect on position determination in each row is corrected $\overline{\bullet}$

good connection between boundaries ! huge improvement !

Big distortion between module boundaries ~ 1 mm

14

Summary for now

- **Performance test with the new high voltage scheme was tested** ・ ω test beam campaign in DESY during 13/Nov \sim 28/Nov for the shielding electronics, mitigation of the track distortions and flexibility of the HV settings.
- **4 detectors were almost perfectly working with the small noise contribution** ・ and without any gain drop due to micro discharges (for physics runs) .
- The structure is observed on the uniformity of the hit charge distribution. ・ This is non-uniformity of the resistive-anode, or other reason? under investigation…
- **Huge improvement was observed for the track distortions as expected** ・
- **Analysis was just started !** ・

See you next time …

hopefully, for ILC-TPC development

Track Distortions (2018 Encapsulated RA-MM)

to make sure how large distortion appear \implies large difference of potential is created. **H.V of the center module was altered or killed (set to 0 V)**

(center module is set to 340V ~ 400V and 0V, drift distance 50 mm) The other modules are set to 380V

Track Distortions (2018 Encapsulated RA-MM)

to make sure how large distortion appear \implies large difference of potential is created. **H.V of the center module was altered or killed (set to 0 V)**

(center module is set to $340V \sim 400V$ and 0V, drift distance 50 mm) **The other modules are set to 380V**

Peaking time scan (optimization)

 σ rφ : width of a $\Delta = x_{track} - x_{hit}$ distribution

Drift length Z= 5 cm, B=1 T, Ed=230V/cm

Direct comparison is not easy due to different pulse shape

it is necessary to tune parameters for pulse finding …

σz : width of a $\Delta = Z_{track} - Z_{hit}$ distribution_g

Things to do

- Gas condition : drift velocity, diffusion constant (not easy for transverse due to RA ...) absorption of seed electrons ... phi angle dependence...
- Resolutions , and Neff which is #of electrons associating to resolution
	- Uniformity for module boundary (upper 2 modules)
- Alignment of the modules without B filed, dependence of each module, systematics ...

T0 (Z0) determination and drift velocities

Geometry scan (old module)

Drift velocity and difusion (T2K gas)

If we require the azimuthal resolution of 100 μ m at z = 200 cm the diffusion constant (D), which is essentially the only free (controllable) parameter depending on the choice of gas mixture, needs to be smaller than 30 μ m/ \sqrt{cm} .

10 V/cm

- \triangleright The diffusion constant D is related to the diffusion coefficient (D^{*}) through $D2 = 2D*/W$, where W is the electron drift velocity.
- \triangleright The electron drift velocity is given by W = e \cdot E/m \cdot τ with e (m) being the electron charge (mass). A large value of τ, therefore, means a fast gas.

The difusion constant of drift electrons under the infuence of an axial magnetic field (B) is given by $D(B) = D(B = 0)/\sqrt{1 + \frac{1}{2}}$ $(\omega \tau)^2$, where $\omega = e \cdot B/m$, the electron cyclotron frequency, and τ is the mean free time of drift electrons between collisions with gas molecules. Therefore we need a gas mixture in which $D(B = 0)$ is small (cool) and τ is fairly large (fast) under a moderate drift feld (E)!