Gain measurements of Chromium GEM foils

Maximilian Littich RD51 Mini-Week (4-6 December 2018), 2018-12-04

Introduction

- **MESA** (Mainz Energy-recovering Superconducting Accelerator):
 - New linear polarized electron accelerator being built at the Institute for Nuclear Physics in Mainz, Germany
 - Up to 105 MeV @ 1 mA (ERL mode)
- MAGIX (MESA Gas Internal target eXperiment)
 - High precision physics including:
 - Search for the dark photon
 - Measurement of the proton radius
 - Internal windows-less gas target
 - Luminosity of **10³⁴ cm⁻² s⁻¹**
 - Magnet spectrometers to identify scattered particles
 - Focal plane detectors: GEMs

Our interest in Chromium GEMs

- Characterized Chromium GEMs to evaluate feasibility of GEM detectors in hodoscope mode for the MAGIX spectrometers
- Tested 10x10 cm² Chromium GEM foils
 - Conductive layer of 100 nm Cr (instead of 5 µm Cu)
 - Produced by CERN
 - Full Cr-GEMs and single sided Cr-GEMs with a regular copper side

GEM detector setup

- Triple GEM setup
- Default GEM voltage: 370 V
- Transfer fields: 200 V/mm
- Induction field: 400 V/mm
- Ionization gap: 5 mm
- Drift field: 100 V/mm
- Counting gas: 70% Ar, 30% CO₂
- Signal from GEM1 anode current

Measurement setup

MAGXOAM

- ⁵⁵FE source with photo energy of 5.9 keV in the center
- G1-current amplified and shaped, Trigger signal from oscilloscope
- Digitization of the signal with a peak sensitive ADC
- In addition: Signal from readout plane measured with APVs

⁵⁵Fe-spectra from the ADC

- Clear energy spectra
 - Photo peak at 5.9 keV
 - Energy resolution $\approx 14\%$
 - Escape peak at 3.2 keV
- Effective Gain:
 - Q_{GEM1}/Q_{ionization}
 - Setup calibrated with a test pulse generator
- Default setup (All GEMs @ 370 V):
 - Effective Gain ≈ 6840

Gain curve of copper GEMs (ADC)

MAGXDAM

- Acquired gain curve by variation of GEM3 voltage from 300 to 420 V
 - GEM1 and GEM2 constant at 370V
- Exponential rise
 - Eff. gain from $\approx 2000 10000$

Gain comparison for Cr GEMs (ADC)

- Cr-GEMs on G3 position
- Two types of chromium GEMs used
 - "One-sided" Cr-GEMs with one side made from copper (red)
 - Full Cr-GEM foil (green)
 - Cu-GEM gain in comparison (blue)
- Noticeable increase in gain over Cu-GEMs
- Stronger effect in Full Cr-GEM

MAGXOW

Confirmation from APV spectra

- Confirmed higher gain with measurements of the readout charge with APV-cards
- Only done for one-sided Cr GEM foils

Relative Gain Cr vs Copper (ADC)

- Ratio of Cr-GEM to Cu-GEM gain
- Local maximum, lower for high voltages
- APV results from a different setup
 - Match the order of magnitude

Conclusion

- Recorded spectra of ⁵⁵Fe to measure GEM detector gain
- Relevant increase of gain for single sided Cr GEM foils
- Double sided Cr GEM foil even higher than single sided Cr GEM
- Gain curves measured with the APV-cards from the readout plane confirmed these observations

Outlook

- Continue systematic scanning for different positions of the Cr-GEM
- Compare multiple positions and different foils
- Redo the APV measurements
 - Check the relative gain curve
 - Check homogeneity
 - Compare GEM foil and readout signals
- Possible explanations for the higher gain?
 - Different charge up effects then in copper
 - Geometrical effects
 - Edge effects

An open question: Peak broadening at ADC spectra

- Charge up effects deform the Gaussian over time (~hours)
- Independent of GEM material
- Prevents us from analyzing the energy resolution from the ADC spectra

- 10 hours at constant GEM voltages (370 V)
- No significant shift in peak position
 - No influence in gain curves

SFB書 PRisma

THANK YOU FOR YOUR ATTENTION!

http://magix.kph.uni-mainz.de

Massachusetts Institute of Technology

University of Ljubljana

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

÷

Westfälische Wilhelms-Universität Münster

Backup: Energy resolution

- **Energy resolution**: Ratio of photo peak width to mean
- APV measurements showed a better energy resolution for Cr GEM beyond the Cu-gain-range
- Peak broadening prevented us from further investigation

MAGXOAM