Introduction to Resistive DLC collaboration Atsuhiko Ochi Kobe University

RD51 mini-week@CERN 05/12/2018

Resistive material for MPGDs

- Resistive electrodes is one of best choice for reducing the sparks on MPGDs.
 - e.g. Many presentations in WG1,2,6 concerning with the resistive electrodes
- However, it is not easy to find the "resistive material" for Micro Pattern.
- In case, surface resistivity of $1M\Omega/sq$. is needed;
 - In general, the electrodes for MPGDs has $0.1\mu m 10\mu m$ thickness.
 - Those correspond to bulk resistivity of $0.1\Omega m 10\Omega m$.

Conventional way for making resistivity

- Carbon black loaded paste/sheet have been used for resistive material
 - Carbon black: small particles, made from mainly graphite.
 - Those are used by mixing in plastic, epoxy, solvent etc.
 - Mechanism of resistivity development

- Carbon black particles contact each other on point, and it makes electrical path.
- We need very small carbon black particles for fine structure of MPGD electrodes.

Carbon dry sputtering \rightarrow DLC

- Sputtered carbon
 - Diamond like, and amorphous structure
 - It means, carbon particles of molecular size!
- Fine structure with proper resistivity is available
 - with liftoff method

Random mixture of sp3 (diamond like) and sp2 (graphite like) carbon makes conductive paths of molecular size.

Resistivity vs thickness (June, 2014)

- For 3.2% N_2 content foils
 - 2400Å \rightarrow 55k Ω /sq.
 - 700Å \rightarrow 700k Ω /sq. (42min. sputter)

DLC for MPGDs

Properties of the resistive electrodes by carbon sputtering

- Fine structure
- Chemical and physical toughness
- Very thin (50nm 500nm)
- Large area is available (1m x 4.5m)
- Demands for DLC is growing up in new MPGD developments
 - MicroMEGAS
 - GEM
 - **RWELL**
 - Micro-PIC
 - Field cage for

DLC production availability for MPGDs

- Japan
 - Be-Sputter Co, Ltd., (Industrial company)
 - Max size ... 1m x 4.5m (foil)
- China
 - Lanzhou institute has their own spattering machine
 - Max size ... 25cm x 25cm (to be enhanced)

The problems to overcome for further R&D

- Resistivity control
 - It is hard to make aimed resistivity
 - Where same deposition thickness and dope, the resistivity is not same in different batch
 - We need to survey the effect of conditions and materials.
 - Uniformity in one foil
 - It strongly depend on conditions. We have to figure out and control the conditions.
- Metal electrodes on DLC foil
 - We have to develop strong and reliable attachment of metal electrodes on DLC
 - Cu sputter on DLC has very weak adhesion
 - Using Cr is better, but father investigation will be need.
- Long time stability
 - We found resistivity change for $> 100 M\Omega/sq.$ high resistivity foils.

DLC Common project (2018–)

- LICP: on the basis of theoretical calculation and simulation, give USTC team a guidance of the work
- USTC: produce different bare DLC foils with different surface resistivity and also DLC foils with Copper coating (DLC+Cu)
- Kobe University: produce large size DLC & DLC+Cu foils in order to study the reproducibility of the process tuned on smalk prototypes and the uniformity of the surface resistivity of the DLC
- CERN: study the behavior and changes of DLC properties under manufacturing processes foreseen for MPGD construction (i.e. µRWELL, resistive GEM and THGEM)
- LNF-INFN: study stability of bare DLC properties under current drawing on bench (w/irradiation)
- CERN: produce detectors with DLC foils
- LNF-INFN: perform aging and spark test of DLC based detectors (with different radiation)

Followed by presentations

- Progress of DLC resistive electrode
 - Yi Zhou
- uRwell DLC detectors under high rate at PSI
 - Marco Poli Lener