

Outline

- ExMe chamber
- Effect of RH on dark current at the detector closing
- Study of gain vs RH
- Effect of RH on dark current after conditioning
- Conclusions
- Previous Studies:
 - Did not find previous studies on the subject, especially regarding dark current on MM
 - Effect of water content on gain studied in other detectors...
 - Reference number: 1% RH ~ 220 ppm

Fig. 36. Discharge probability on alphas as a function of moisture level in the gas.

- ExMe (exchangeable mesh) detector
 - Designed and built at CERN in 2014 (J. Wotschack, P. lengo, R. De Oliveira, G. Sekhniaidze) to help selection of mesh type and pillar spacing for the ATLAS NSW project
 - Mesh stretched on iron frame \rightarrow easy to replace
 - o 4 sectors with different pillar spacing: 5/7/8.5/10 mm
 - Circular pillars (300 um diameter) 120 um height
 - Otherwise similar to ATLAS MM (screen-printed resistive lines on Kapton, same width/pitch as ATLAS).

Same detector used for mesh and gas studies

(P.Iengo at RD51 Mini Week in Oct and V. D'amico in this session)

Exchangeable Mesh detector (ExMe)

- Only sector with 7mm pillar spacing active
- Other sectors passivized with 12.5 um kapton film on top of the pillars
- Mesh 18-45 Calendared
- RH measured at the output of the detector

Effect of humidity on dark current

- Detector flushed with dry air immediately after closing
- Current measured every sec

Effect of humidity on dark current

- Detector flushed with dry air immediately after closing
- Current measured every sec

Effect of humidity on dark current

- Detector flushed with dry air immediately after closing
- Current measured every sec, average on 100 measurements

Gain vs RH

- Gain is expected to slightly decrease as water content increases as effect of electron attachment
- Very small effect for E values as in MM amplification regi ~larger in drift region (600 V/cm)

 Small effect on ion mobility (C. Garabatos et al, GEM)

Figure 4.39 Electron attachment coefficient for oxygen (Bloch and Bradbury, 1935).

Figure 4.40 Electron capture probability in water vapours as a function of reduced field (Bradbury and Tatel, 1934).

- HV_{res} = 500 V, HV_{drift} = 300 V; Ar:CO2 93:7
- Gain (relative) measured with ⁵⁵Fe source and MCA

FR

RH scan

- RH scan with Ar:CO2 93:7 with chamber already conditioned (running since several days with HV on)
 - Gas flow ~4l/h (detector volume ~1l)
 - o 2 nA bias on HV channel

HV scan at fixed RH

- HV scans after stabilizing RH
- Current measured at 1Hz frequency \rightarrow average on 100 measurements
- Example: 15.5% RH

HV scan at fixed RH

- HV scans after stabilizing RH
- Current measured at 1Hz frequency \rightarrow average on 100 measurements
- Currents depending on RH of gas AND history of chamber

Interpretation

- Observations:
 - o Current 'induced' by humidity is non linear \rightarrow discharges in gas
 - Two different behaviors observed: at detector closing (or after long time not being flushed) and during steady operation (after conditioning)

Detector closing Water molecules trapped in detector material (pillars surfaces, local dust, etc) highly impact the dark current Improves with time/flushing \rightarrow conditioning (moisture desorption from material)

Stable operation (after conditioning) Moisture entering through gas pipes and o-ring Water molecules follows the gas path, no local accumulation on material (in short- and midterm) \rightarrow tolerable impact on currents for reasonable HR levels

Conclusions

- Effect of humidity studied on resistive Micromegas
- Gas gain does not change significantly with RH (interval studied 9-30% RH)
- Large dependency of dark current vs RH at the detector closure → desorption of water content from the detector ('chamber conditioning')
- After conditioning: reduced (but still there) dependency on RH of gas
- Measurement of gas RH is not the only parameter to be accounted for: history matters

Thanks to: E. Oliveri, L. Ropelewski, F. Sauli, R. Veenhof for useful discussions

Additional Material

Study on Pyralux

Study on Pyralux

Resistivity Vs Temperature

The last four points follow $ho=e^{A+B/T}\,$ relation with T expressed in Kelvin

The test board has been on air for all the data-taking -> Further investigation on humidity effect needed

Study on Pyralux

Resistivity Vs Humidity

12 o(x10¹⁵Ω cm) Drying the test board with ArCO2 or with N₂ ArCO₂ N₂ gives the 10 possibility to gain one/two order of magnitude in resistivity with respect to the initial value ļ These results are coherent with what has been observed Nominal value: 3.4x10¹⁶ Ωcm from datasheet immediately after the cooking procedure 0 10 15 20 5 25 Relative Humidity (%)

The measured lower resistivity can be explained with the absorption of humidity on part of the coverlay material