X-ray fluorescence and imaging using triple GEM detectors Results of measurements at CERN with the SRS

Geovane G. A. de Souza and Hugo N. da Luz

Universidade de São Paulo – São Paulo, Brasil

High Energy Physics and Instrumentation Center

RD51 Mini-Week

4th December 2018

Main goal: Create an X-ray fluorescence imaging system using GEM detectors

- Large sensitive area
- Applicable to cultural heritage studies
- Portable (future work)

First triple GEM detector

- 4 electronic channels to determine position and 1 for energy (charge collected at the bottom of the last GEM)
- Strip readout in X and Y resistive charge division
- 'Center of mass' determination of position
- Operating at atmospheric pressure with Ar/CO₂ (90/10)

Detector was first characterized in transmission mode

6

Determination of the modulation transfer function (MTF) from periodic objects

Results from São Paulo Resistive charge division.

3

Results from São Paulo Resistive charge division.

^{*} C.D.R. Azevedo et al., Phys. Let. B 741 (2015), 272-275

Spatial resolution results

- For lower energies signal-to-noise ratio is dominant
- For higher energies photon electron range increases
- Optimal spatial resolution for the triple GEM using resistive charge division is 1.2 mm (8 to 9 keV).

Energy resolution and gain corrections

Gain corrections across the detector

Temporal corrections – gain difference caused by temperatures changes in the detector's room

Corrections fully reconstructed the energy spectrum

- 6.8% energy resolution
- Detector's gain close to 20000
- Ar/CO₂(90/10)

Test with SRS at CERN during November

- Transmission mode ~ 2h30 hrs acquisition
- 1.2 kHz acquisition rate
- APV25

Able to distinguish contrast till 2.8 lp/mm \approx 350µm

Test with SRS at CERN during November

Fourier analysis

Peak at 2.5 mm⁻¹, corresponding to 400 μ m, pitch of the readout strips

Bat Profile

Reconstruction of the cluster

Using the normal 'center of mass'

Using the square of the charge (q²)

Using the changes made by Heikki Pulkkinen Weight = (strip_charge)²; Centroid = sum(Weight.*strip_position)/sum(Weight);

• Enhancement of some other artifacts

Profile analysis

X-Profile - q2

Playing with 2D Fourier analysis – work in progress

Remove some frequencies

Playing with 2D Fourier analysis – work in progress

Remove some frequencies

X-ray fluorescence using SRS

Fluorescence Image

- X-ray tube 20 keV 40mA Cu target
- 1 mm Tantalum pinhole
- ~600Hz acquisition rate

X-ray fluorescence using SRS

15

Thank you to the whole GDD lab for the great hospitality, dedication and fun!

Thank you Natasha Aguero for the pigment samples!

