Resistivity change of printed foils for ATLAS Micromegas production

P. Iengo, L. Longo, Y. Masahiro, T. Masubuchi, A. Ochi, O. Sidiropoulou
Outline

- resistive foils production
- resistive foils quality control (QC)
- gluing procedure
- observations about the resistivity change

Schematic view of an ATLAS Micromegas readout board
Resistive foils production

Product:
ESL Electroscience®
RS 12115

- *old* paste
 - resistivity (ρ)≈1 MΩ/sq
 - mostly used for pre-series and some mass production foils
- *new* paste
 - resistivity (ρ)≈0.4-0.5 MΩ/sq
 - used for mass production foils

Curing: initially done in oven at 170°C for 2h following the company specifications (mostly for pre-series), then moved to IR curing to save time (11.5 min) and guarantee a more uniform warming

Foils production @ Matsuda

5. Application of the screen on 50µm Kapton®

6. Printing with resistive ink through the screen

7. Screen removal and drying (heat or IR) → Positive pattern of resistive ink (≈10-15µm)

not to scale
Nomenclature:
• 1st batch: old paste, IR at 200°C
• 2nd batch: new paste, IR at 170°C; peeling issue observed -> necessity of an additional step of curing (170°C for 2h in the oven)
• 3rd batch: new paste, IR at 200°C
• 4th batch: new paste, IR at 200°C
• 5th batch: new paste, IR at 220°C
Several checks on the quality of the foils are performed in Kobe focusing on:
- strip pitch
- strip width
- dimensions
- possible printing defects
- resistivity

For each foil a resistivity map is performed:
- device with ~100 probes
- depending of type boards, we could measure from ~100 up to more than 300 points
Resistivity foils QC

Resistivity

(target resistivity = 0.85 MΩ/sq)

- **Average criteria**
 - Average Resistivity (per foil) 0.43MΩ/sq < R < 1.7MΩ/sq

- **Outlier criteria**
 - 95% of measured points within 0.28MΩ/sq < R < 2.6MΩ/sq: Grade B
 - 99% of measured points within 0.28MΩ/sq < R < 2.6MΩ/sq: Grade A
 - 95% of measured points within 0.21MΩ/sq < R < 3.4MΩ/sq: Grade B

Same system used for the foil measurements performed in Kobe is also used at CERN
Readout board

Resistive foil polishing before pillars creation:
- ELTOS: polishing machine
- ELVIA: manual polishing

Pressing procedure:
- pressure $(P) > 5$ Kg/cm2
 - ELTOS: $P > 14$ Kg/cm2
 - ELVIA: $P > 11$ Kg/cm2
- temperature = 170°C
- waiting time of 45 min
Resistivity

Resistivity average distribution before (Kobe) and after (CERN) gluing

- Ratio distribution: long tail overcoming 3 (current rejection threshold)
- $<\text{Ratio}> \approx 1.38$

14% foils show $\rho \geq 2$ MΩ/sq

The spread in resistivity, observed after the gluing procedure, found to be related to the paste type and NOT to the production process
Resistivity

Foils produced with the new paste show roughly the same average resistivity.

Most of these foils can be still used, even if showing a ratio higher than 3.

Deviations from the initial value observed when old paste is used.
Resistivity

CRITERIA: trying to avoid a drop of 5 V in operation condition; assuming $I_{\text{max}} = 5 \mu A$, still possible if the difference in resistance (ΔR) between the middle of the board and near the coverlay rim is less than 100 MΩ

Assuming boards with Ratio < 4 and $\Delta R < 100 \text{M} \Omega$ as good, up to now acceptable boards are 96% instead of 94%
Resistivity

Resistivity more homogenous for the foils made with new paste
Conclusion

• good technology transfer
• foils production well under control
• carefully quality check is performed in Japan
• additional checks performed at CERN
• 96% of the produced boards are acceptable from resistive foils point of view
• main issue is ONLY related to the paste type

Thanks to R. De Oliveira
Backup
Readout production schema

I. Copper pattern creation
 Selective Ag/Au/Pd plating on connector finger print
II. Gluing of the resistive foil
III. Resistive foil cutting
IV. Silver HV connection
V. Cutting and drilling
Resistive foils QC

CRITERIA 1

Resistivity

target resistivity = 0.85 MΩ/sq

- **Average criteria**
 - Average Resistivity (per foil) $0.43 \text{MΩ/sq} < R < 1.7 \text{MΩ/sq}$

- **Outlier criteria**
 - 95% of measured points within $0.28 \text{MΩ/sq} < R < 2.6 \text{MΩ/sq}$: Grade B
 - 99% of measured points within $0.28 \text{MΩ/sq} < R < 2.6 \text{MΩ/sq}$: Grade A
 - 95% of measured points within $0.21 \text{MΩ/sq} < R < 3.4 \text{MΩ/sq}$: Grade B

Strip pitch

- Average: Small module: 425um±10%, Large module: 450um±10%
- Average±RMS: 425um±20%, 450um±20%
 - Fulfilled: Grade A Not fulfilled: Grade B

Strip width

- Average 300um±10%, Average±RMS: 300±20%
 - Fullfilled: Grade A Not fulfilled: Grade B
Resistive foils QC

CRITERIA 2

Dimension
 • Absolute dimension (from gerber file) within ±1mm
 ◊ Fulfilled: Grade A Not fulfilled: Grade B

Visual check (+ double check with scanned image)
 • Printing defects (Cut, mis-interconnection, dust):
 → Minor defect: <5×5mm²
 → Major defect: 5×5mm² <defect size<10×10mm²
 → Critical defect: >10×10mm²
 ◊ Minor <= 10 && Major defect <= 1 : Grade A
 ◊ !Grade A && (Minor <= 20 || Major <= 2) : Grade B
 ◊ Failed Grade B in criteria 2 : Reject

!!! Ink squeeze-out may not be counted as defect
SE15

- **SE1(5)_0XXXX**: New paste, cure 170 degree IR
 - Produced in Oct 2016 ➔ Peeling issue appeared
 - Recured at CERN to fix peeling issue ➔ Used in urgent cases

- **SE1(5)_1XXXX**: New paste, cure 200 degree IR
 - Produced in Mar 2017 (~40 foils)

- **SE1(5)_2XXXX**: New paste, cure 220 degree IR
 - Produced in June 2017 (~40 foils)
SE24

- **SE2(4)_0XXXX**: New paste, cure 170 degree IR
 - Produced in Oct 2016 ➔ Peeling issue appeared
 - Recured at CERN to fix peeling issue ➔ Used in urgent cases

- **SE2(4)_1XXXX**: New paste, cure 200 degree IR
 - Produced in Apr 2017 (~30 foils)

- **SE2(4)_2XXXX**: New paste, cure 220 degree IR
 - Produced in June 2017 (~50 foils)
SES3

- **SES3_0XXXX**: New paste, cure 170 degree IR
 - Produced in Oct 2016 ➔ Peeling issue appeared
 - Recured at CERN to fix peeling issue ➔ Used in urgent cases

- **SES3_1XXXX**: New paste, cure 200 degree IR
 - Produced in Apr 2018 (~40 foils)

- **SES3_2XXXX**: New paste, cure 220 degree IR
 - Produced in June 2017 (~40 foils)
SE6

- **SE6_0XXXX** : old paste, cure 200 degree IR
- Produced in May 2016 (~80 foils)
SE6

- **SE6_0XXXX** : old paste, cure 200 degree IR
 - Produced in May 2016 (~80 foils)
SE8

- **SE8_0XXXX**: old paste, cure 200 degree IR
- Produced in June 2016 (~80 foils)
SS15

- SS1(5)_0XXXX : New paste, cure 200 degree IR
- Produced in Feb 2017 (~80 foils)
SS24

- SS2(4) _0XXXX_ : New paste, cure 200 degree IR
 - Produced in Feb 2017 (~80 foils)
SS6

- **SS6_0XXXX**: New paste, cure 200 degree IR
 - Produced in Feb 2017 (~80 foils)
SS7

- **SS7_0XXXX**: New paste, cure 200 degree IR
 - Produced in Feb 2017 (~80 foils)
SS8

- SS8_0XXXX : New paste, cure 200 degree IR
- Produced in Feb 2017 (~80 foils)
LE12

- **LE1(2)_0XXXX** : New paste, cure 170 degree IR
 - Produced in Oct 2016 ➔ Peeling issue appeared
 - Recured at Matsuda to fix peeling issue ➔ **Used in urgent cases**

- **LE1(2)_1XXXX** : New paste, cure 200 degree IR
 - Produced in Mar 2017 (~30 foils)

- **LE1(2)_2XXXX** : New paste, cure 220 degree IR
 - Produced in June 2017 (~40 foils)
LE3

- LE3_0XXXX : New paste, cure 200 degree IR
- Produced in Jan 2017 (~80 foils)
LE4

- LE4_0XXXX : New paste, cure 200 degree IR
 - Produced in Jan 2017 (~80 foils)
LE5

- LE5_0XXXX : New paste, cure 200 degree IR
- Produced in Jan 2017 (~80 foils)
LE6

- **LE6_0XXXX**: old paste, cure 200 degree IR
- Produced in May 2016 (~80 foils)
LE7

- LE7_0XXXX: old paste, cure 200 degree IR
- Produced in May 2016 (~80 foils)
LE8

- LE8_0XXXX : new paste, cure 170 degree IR
 - Produced in Oct 2016 ➔ Peeling issue appeared
 - Recured at ELVIA/Matsuda to fix peeling issue ➔ Used in urgent cases

- LE8_1XXXX : new paste, cure 200 degree IR
 - Produced in Mar 2017 (~30 foils)

- LE8_2XXXX : new paste, cure 220 degree IR
 - Produced in June 2017 (~50 foils)
LS12

- LS12_0XXXX: new paste, cure 200 degree IR
- Produced in Feb 2017 (~80 foils)
LS3

- LS3_0XXXX : new paste, cure 200 degree IR
 - Produced in Feb 2017 (~80 foils)
LS4

- LS4_0XXXX : new paste, cure 200 degree IR
- Produced in Feb 2017 (~80 foils)
LS5

- LS5_0XXXX: new paste, cure 200 degree IR
 - Produced in Feb 2017 (~80 foils)
LS6

- LS6_0XXXX: old paste, cure 200 degree IR
- Produced in May 2016 (~80 foils)
LS7

- LS7_0XXXX: old paste, cure 200 degree IR
- Produced in May 2016 (~80 foils)
LS8

- **LS8_0XXXX**:
 - old paste, cure 200 degree IR ➔ Produced in May 2016 (~12 foils)
 - We fully consumed old paste during this production, then use new paste after LS8_00013
 - new paste, cure 200 degree IR ➔ Produced in Feb 2017 (~70 foils)