

SCREAM* at PS

6.12.2018

D. Shaked Renous, WIS

on behalf of the SCREAM Common Project consortium** RD51 mini-week, CERN, Dec. 6th 2018

(**)

1. CNRS/IN2P3/LAPP, M. Chefdeville, C. Drancourt, Y. Karyotakis, G. Vouters

2. Weizmann Institute of Science, S. Bressler, D. Shaked Renous, P.

Bhattacharya

3. Technion, E. Kajomovitz, L. Moleri

4. NCSR Demokritos/INP, T. Geralis

5. CEA/IRFU, M. Titov

6. University of Aveiro, J. Veloso

7. University of Coimbra, F. Amaro

* Sampling Calorimetry with Resistive Anode MPGDs

Introduction

- Goal: Test of an MPGD-based calorimeter prototype
 - Good containment of showers up to 10 GeV with ~10 layers
- Test beam 1-12.11.2018 at PS/T10.
 - Parasitically
 - 4 groups in total.
 - Low energy (E <7 GeV; p 1-6GeV/c) electrons and pions
 - Electron beam was not possible due to large material budget upstream and pressure from other users in T9 and T10.

Experimental setup

- <u>12 Detectors</u>
 - Active Sensor Unit (ASU): 28 MICROROC (x64 channels with 3 thr) \rightarrow 1792 pads of 1x1 cm2 (with or w/o diodes)
 - 3 48x48 cm² resistive bulk- μ M: embedded-R (~1 M Ω)
 - 5 48x48 cm² RPWELL: silicate glass (~10¹⁰ Ωcm)
 - 3 16x16 cm² bulk-µM with 4 MICROROC
 - 1 16x16 cm² resistive bulk-µM with 4 MICROROC
- 2 cm thick <u>steel absorbers</u> between the different layers
 - Calorimeter is between 1-1.5 interaction length thick.
- Hold onto a mechanical structure and read by a single DAQ system.
- Trigger: from ALICE ~1x1 cm²
- Gas: Ar/ 7%CO₂, flushed in parallel in all chambers
 - thanks a lot to RD51
- HV mainframe and monitoring supplied by RD51.

Experimental setup

T9 Beam Composition

Open collimators and electron enriched target

- Used T10's Čerenkov counter as veto.
- In hadron enriched target, e[±] should be much smaller.

Experimental setup

- Single DAQ system
- Steel absorbers
- Two configurations:
 - 11 detectors
 - 3 16x16 cm² µM
 - 3 48x48 cm² µM
 - 5 48x48 cm² RPWELL
 - 8 detectors
 - 3 16x16 cm² µM
 - 3 48x48 cm² µM
 - 2 48x48 cm² RPWELL
 - Thus increasing DAQ efficiency by a factor of 5.

Test summary

- First run with so many sampling layers
- Lots of time-consuming debugging
 - Difficult to access the area
 - Detectors arrived after installation
 - 3 THGEM electrodes were of low quality
- Parasitic users:
 - Only two shifts as master
 - Difficult to change the energy main user used 5 GeV/c
- Pions
 - Energy scan 2,3,4,5 (and 6 GeV for the 8 layers) @ ~6000/spill
 - 11 detectors: ~15k triggers for each energy value
 - 8 detectors: triggers > 25k for each energy value
 - Short voltage scan
 - Rate scan
- Many thanks to:
 - Paolo Martinengo and Crispin William (ALICE), for allowing our parasitic use
 - RD51 for the gas, HV, monitoring

Actual statistics larger than triggers

- The ASU records between triggers
 - writes more incidents than the triggering region
- Instead of hits synced with trigger → search for peaks in # of hits

Typical beam profile

• Clear beam profile on all chambers

Typical beam profile - time cut

• Selection of events corelated with trigger time

Event display

- Clear tracks
- Allows tagging
 - penetrating MIPS
 - Showers
 - to select showers starting at the beginning of the calorimeter

Preliminary results

• Number of hits distribution requires some refinement, but close to simulation prediction.

Summary

- First SDHCAL prototype with multiple RPWELL and μM detectors was tested at PS/T10
- Interesting data set to look at the performance of an MPGD-based SDHCAL

Next steps:

- Experimental data analysis is ongoing
- Geant4 simulation work will follow.

Thank you