

Spark protection scheme for the SAMPA-based ALICE TPC electronics

6th December 2018

Christian Lippmann

- Overview
- Issues found with input protection
- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

ALICE TPC overview

• Diameter: 5 m, length: 5 m

• Gas:

- $Ne-CO_2-N_2,$
- (Ar-CO₂ in 2015, 2016 and 2018)
- + Max. drift time: ~100 μs
- 18 sectors on two sides
- Inner readout chambers: IROC
- Outer readout chambers: OROC

Continuous operation

Typical data taking with TPC in RUN3: High luminosity Pb-Pb collisions

- Maximum drift time of electrons in TPC: ~ 100us
- Average event spacing: ~20us
- Event pileup
- Triggered operation does not make sense
- Minimize ion backflow (IBF) in different way

New Readout chambers

18 sectors on two sides → 72 chambers
Inner readout chambers: IROC
Outer readout chambers: OROC

New TPC FEC (1)

TPC Front End Card Rev 1 with integrated flexible signal cables (rigid flex)

New TPC FEC (2)

TPC Front End Card Rev 1 with integrated flexible signal cables (rigid flex)

Spark protection

- SAMPA: Device-level ESD protection for handling (diodes and 7 Ω series resistor)
- System-level protection on FEC: Diodes and resistors

- Resistor value (100 Ω) chosen based on tests with SAMPA MPW2 and prototype GEM chamber

• Overview

Issues found with input protection

- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

Problems found (1)

2 Problems:

- 1. Protection resistors may get damaged by (a few) discharge pulses with the expected pulse energy (while the SAMPA is protected)
- 2. Availability of the back-to-back diode package (NUP4114) used so far on all prototypes became critical (full quantity only end of January 2019)

Problems found (2)

Issues:

- 1. NUP4114 diode package not available in sufficient numbers until end of January 2019
- 2. Resistor (SMD, 0603 package) not reliable after discharges

- Overview
- Issues found with input protection
- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

ATLAS "chip killer"

- Worst case (discharge propagation to pad plane, 0.32 mJ into pad) can be simulated with capacitor and HV
- ATLAS "chip killer" makes such tests straightforward
- 1 nF, 1 kV capacitor

- Overview
- Issues found with input protection
- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

NUP 4114 diode package

Package: SOT563

http://www.onsemi.com/pub/Collateral/NUP4114-D.PDF

SOLDERING FOOTPRINT*

Problem: Circuit diagram was updated some years ago, part number not changed!

This used to be the diagram:

SP3004 diode package

Alternative product: Littlefuse SP3004 Series

Same package available: SOT563, pin compatible

http://m.littelfuse.com/~/media/electronics/datasheets/tvs_diode_arrays/ littelfuse_tvs_diode_array_sp3004_datasheet.pdf.pdf

The ATLAS NSW group are using this component. They have moved to this product because of the circuitry changed in the NUP4114

Package Dimensions – SOT563

Functional Block Diagram

Pinout

- Overview
- Issues found with input protection
- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

MELF example

- ATLAS TRT and NA62 straw. No channel lost in all these years
- MELF resistors TOKEN RDM16
- Double protection diodes (BAV99 A7W, 1 channel per package)
- Problem: Takes a lot of space! MELF hardly available with short lead times

Photo by Peter Lichard

Resistor test summary

Name	Туре	Size	Power rating	Resistance (Ω) after 1 spark	Resistance (Ω) after 11 sparks	Resistance (Ω) after 201 sparks
Default resistor (Yageo)	Thick film SMD	0603		100	102	×
YAGEO RT0603FRE07100RL	Thin film SMD	0603	0.1 W	107	200	×
Vishay MCT0603MD1000DP500 (automotive qualified)	Thin film SMD	0603	0.15 W	101	102	105
TE Connectivity RP73PF1J100RBTDF	Thin film SMD	0603	0.166 W	100	103	×
Vishay PCAN0603E1000BST3	Thin film SMD	0603	0.5 W	×		
ROHM ESR03EZPJ101 (anti-surge, discharge resistant)	Thick film SMD	0603	0.25W	100	100	102
ROHM KTR03EZPF1000 (high voltage, automotive)	Thick film SMD	0603	0.1 W	100	100	101
ROHM SFR03EZPF1000	Thick film SMD	0603	0.063 W	100	150	500
BOURNS CRS0603AFX-1000ELF (pulse withstanding)	Thick film SMD	0603	0.125 W	100	100	100
MULTICOMP MCHVR03JTEX1000 (high voltage rated)	Thick film SMD	0603	0.1 W	100	100	103
VISHAY MCT06030C1000FP500 (automotive)	Thick film SMD	0603	0.125 W	100	101	×
VISHAY CMA02040X6809GB300 (automotive, high pulse load)	Carbon film MiniMELF	1.4 x 3.6 mm2	0.4 W	100	100	100

TVS diode test boards

00-2

TVS test summary

Name	Stand-off voltage	Capacitance	Size	Resistance (Ω) after 1 spark	Resistance (Ω) after 11 sparks	Resistance (Ω) after 201 sparks
Semtech RCLAMP3321P.TNT	3.3 V	0.35 pF	1 x 0.6 mm ²	100	100	100
Semtech UCLAMP3321ZATFT	3.3 V	4.2 pF	0.6 x 0.3 mm ²	100	100	100

- Very good protection against large number of discharges with both TVS diodes
- Larger capacitance of 3321ZA is more "noisy"
- Resistor value could be decreased, from 100 Ω probably to 10 Ω (as in ATLAS), with benefit of reducing noise (not tested)
- For the TPC FEC we did not have the time for an additional prototype cycle, so this option was excluded unfortunately

- Overview
- Issues found with input protection
- Testing
- Diode packages
- Resistors
- Tests with additional diodes
- System test status

IROC test setup

Purpose : Test of a fully equipped IROC to evaluate mechanical aspects and performance under realistic conditions

- 33 Front-End-Cards, cooling and final LV system
- IROC and FECs located in clean room where TOC upgrade will take place

Noise results

Summary and outlook

- ALICE TPC FECs based on SAMPA ASIC and GBT readout
- Input protection resistor found to be un-reliable in discharge tests with first FEC versions
- Input protection diodes were changed from NUP4114 (not recommended by ATLAS NSW, lead times not compatible with FEC production schedule) to SP3004 (recommended by ATLAS NSW)
- Testing performed with pulse injection board developped for ATLAS (thanks to University of Athens and BNL) and with real sparks from GEM stack
- Careful choice of series resistor (automotive industry) leads to reliable spark protection
- Additional protection layer (Semtech TVS diode, recommended by ATLAS NSW) looks great in tests, but could not be added to FEC layout due to scheduling reasons
- Successful full system tests