VMM frontend: power and cooling
SRS frontend status

VMM3a SRS hybrid:
- 25 hybrids pilot production received (for GDD users)
- 25 Wafers ordered with shared contributions from RD51-CERN, Bonn Univ, ESS -Lund
- minor PCB revisions (PCB thickness) for mass production 4Q19
- Addition of VMM cool wrapper (this talk)

-SAMPA SRS hybrid:
- Collaboration was set up between S.Paolo and CERN GDD
- start with 64-channel version same footprint as APV/VMM
VMM3a pilot production

4 pre-production already in use, 20 under acceptance test
Power consumption VMM hybrid

- **Chip Power 1 x VMM3a**
 1.2V @ ~ 800mA from external P2 power line through 4 LDO’s
 ∑ ~ 1 Watt

- **Chip power Spartan FPGA + Flash**
 2.5V @ 120mA from external P1 power line through 1 LDO
 ∑ ~ ¼ Watt

- **LDO linear power converters + uPower ADC**
 2V(P2) -> 1.2V : 0.8V*800mA =0.64W
 3.3V(P1) -> 2.5V : 0.8A*120mA = 0.1 W
 2 x uADC 2.5V * 1mA -> negligible
 ∑ ~ ¾ Watt

- **Single VMM3 hybrid (total nominal):**
 2 x VMM3 + Spartan + LDO’s + uADCs

Total: ~ **3W**
Bottom side dissipation

2x VMM3a ASIC below Globtop (2W)

Spartan FPGA (1/4 W)

Flash (1/10W)

Bottom-side dissipation $O(2 \frac{1}{4} \text{ Watt})$
TOP side dissipation: 5 x LDOs

View from top when plugged on detector.

- IC7 VDD 1.2V, 150mA Charge amplifiers
- IC6 VDD 1.2V, 400mA Analogue circuits
- IC9 VDDAD 1.2V, 200mA ADCs
- IC5 VDDD 1.2V, 150mA Digital and SLVS drivers
- IC8 Voux 2.5V 0.1A FPGA and Flash

Note: IC5-9 are 2-Ampere CMOS LDO’s of type ADP174ACPZ-R7

P2 nominal estimated ~ 850mA/ASIC

J2

J1

Crimp Contacts Samtec CC79L-2024-01-L

Wire SCem 04.01.61.600.6 0.5 mm2

Note: IC6 has highest power dissipation and is hotter than the other LDO’s

Note: The auxiliary power cables/connector shown here are optional. By default VMM hybrids get powered via the HMDI link.

Top-side dissipation $\mathcal{O}(3/4 \text{ Watt})$
Cooling motivations

- ASIC lifetime
 (exponential) function of die temperature
 main factor electromigration fail fraction
 VMM specs recommended operation below 50 C
- Noise & gain
 ENC @ preamplifier, leakage currents increase with T
 gain defining capacitor changes with T
- Detector gain
 keep constant and in ambient range (20C)
4 cooling concepts VMM

1.) cooling bar on detector frames, no wrapper
2.) flat wrapper for ventilated cooling pipe
3.) flat wrapper for 4 mm dia cooling pipe
4.) profiled wrapper for convection cooling
5.) profiled wrapper with cooling snake (in-out)
1- cooling bar below hybrid (without wrapper)

VMM hybrid on detector plane with cooling bar

placement pitch for arrays of VMM hybrids: 50 mm
-> Power to be dissipated $W = 3\text{Watt}/50\text{mm}$

so far no known detector implementation
VMM cool wrapper concept
heat transfer bottom to top

• Heat from VMMs transferred from bottom to top side via:
 4 metal heat contacts + heat conductive tape/ Si compound

• VMM junction temperature stabilizes at $O(45..55 \, \text{C})$ with
 a.) ventilated flat wrapper: $T_{\text{junct}} \sim 47 \, \text{C}$
 b.) profiled, black wrapper, convection-only: $T_{\text{junct}} \sim 55 \, \text{C max}$
flat wrapper parts
(ventilated air cooling)

MMCx shells

Bottom ALU wrapper plate

VMM hybrid

Si-grease on hot chips
2-3 W/mK

flat ceramic coolers
5..6 W/mK if ventilated

Ceramic coolers tape-glued on top ALU wrapper
flat wrapper topside assembled
(for ventilated airflow)
flat wrapper sandwich
(4 mm dia cooling pipe)

grounding wire M2 plug
profiled wrapper
(convection cooling)

Preferred solution without ventilation
profiled wrapper
= custom production
Top side profiled cooler

commercial offer (Radian Heatsinks) modified from round to square pillars (cost reason):

NRE ~ 1kFs
~ 5 Fs/cooler > 500

Order 5 samples (NRE free) for tests

12/5/2018
Hans.Muller@cern.ch
bottom plate for all wrappers

bottom side plate: only holes, no profiles

ALU prototype designed and 10 pc produced at CERN with water cutting
~ 15 Fs/ pc , try to find cheaper for volume (500+) production

Bottom plate . dxf file for water cutting machine
Bottom side hybrid with VMM wrapper

- HRS connector
- MMCX grounding shell
- Pressfitted MMC shells
- M2.5 x 12 bombhead brass
- Cut washer M3
- Brass Nut M3
- 2x MMCX for neighbor VMM cluster feature
- 3mm ALU wrapper bottom plate (direct thermal contact with VMMs)
profiled VMM wrapperPlus
(cooling towers + cooling snake I/O)

Probably only solution to keep VMM junctions at recommended O(40C) ➔ will be tested when custom profile cooler will be received
VMM cool wrapper
(all details)

VMM top cooler 3mm Aluminium (airflow)

Thermal contact Top/Bottom B:
2 x MMCX shells (Brass) MMCX-J-P-H-ST-TH1

Thermal contact Top/Bottom A:
2 x M2.5 x 12 mm Brass screws

Thermal budget top side:
5 x LDO’s ADP1741- LFPC-16 ~ total 1W dissipation
thermal contact to cooler: conductive tape (BG405792, 1.5mm)
+ Si Compound on each LDO

Gap on top 2.74mm
PCB: 1.1 mm incl. traces
top to bottom 12.2 mm

Stackheight below hybrid 5.2mm

Click-in-jack (shell only) for detector frame:
MMCX-J-P-H-ST-TH1

2x neighbor channel connector:
MMCX-J-P-H-ST-TH1

Thermal budget bottom side:
2 x VMM3a (each 1W over 21x21 mm2) globotopped: thermal conductivity 1.3 W/mK
heat transfer to plate: Si Compound thermal conductivity 2.5 W/mK

VMM bottom cooler 3 mm Aluminium (on detector frame FR4)
Cooling tests
(Eraldo and Yan)

Photo: trending curves of internal + external temperatures

Temperature probes: Top, Bottom
VMM junction temperature via I2C readout of micro ADCs on VMM3a
Conclusions

VMM hybrids should not be used without cooling.

A variety of VMM cooling solutions, tests ongoing, custom cooler parts on order.

Small systems: convection cooling with profiled wrapper recommended.

Medium size systems: ventilated flat wrapper appropriate.

Larger systems: cooling pipes (4 mm Dia.) with waterflow.

Low noise systems: profiled wrapper with waterflow.