
Zeek’s Logging
Framework

Streams, filters, writers,
and related features

Christian Kreibich
christian@corelight.com

@ckreibich

https://twitter.com/ckreibich

Background

Part 1

Zeek

Zeek
Packets

Events

Zeek
Packets

Events ?

Zeek
Packets

Events
Logs!

Logging basics

Part 2

Set the stage
 # Create ID for our new stream:
 redef enum Log::ID += { LOG };

 # Define (or redef, in order to extend) the record type to log.
 # This defines all log columns and data types:
 type Info: record {
 ts: time &log;
 id: conn_id &log;
 service: string &log &optional;
 missed_bytes: count &log &default=0;
 };

 event bro_init() {
 # Create the stream. This adds a default filter.
 Log::create_stream(Foo::LOG, [$columns=Info,
 $path="foo"]);
 }

Write a log entry
 # Identify suitable event and trigger write:
 event connection_established(c: connection) {
 local rec: Foo::Info = [$ts=network_time(), $id=c$id];
 Log::write(Foo::LOG, rec);
 }

Enjoy output file foo.log!
 #separator \x09
 #set_separator ,
 #empty_field (empty)
 #unset_field -
 #path foo
 #open 2019-04-07-00-27-05
 #fields ts id.orig_h id.orig_p id.resp_h id.resp_p service missed_bytes
 #types time addr port addr port string count
 1052146262.950001 203.241.248.20 3051 80.4.124.41 80 - 0
 #close 2019-04-07-00-27-05

Or, with LogAscii::use_json=T...

{"ts":1052146262.950001,
 "id.orig_h":"203.241.248.20",
 "id.orig_p":3051,
 "id.resp_h":"80.4.124.41",
 "id.resp_p":80,
 "missed_bytes":0}

?

Key components

● Streams identify data flows
○ What to log

● Filters control their manifestations
○ How / whether to log

● Writers output the data
○ Where to log

Key component: streams
 # Type defining the content of a logging stream.
 type Stream: record {
 # A record type defining the log's columns.
 columns: any;

 # Event that will be raised once for each log entry.
 ev: any &optional;

 # A file path inherited by any filters added to the stream
 path: string &optional;
 };

Key component: filters
 # A filter type describes how to customize logging streams.
 type Filter: record {
 # Descriptive name to reference this filter.
 name: string;

 # The logging writer implementation to use.
 writer: Writer &default=default_writer;

 # Indicates whether a log entry should be recorded.
 pred: function(rec: any): bool &optional;

 # Output path for recording entries.
 path: string &optional;

 # Subsets of column names to record.
 include: set[string] &optional;
 exclude: set[string] &optional;

 # Many others -- take a look in scripts/base/frameworks/logging/main.bro!

Filter predicate example
function http_only(rec: Conn::Info) : bool {
 # Record only connections with successfully analyzed HTTP traffic
 return rec?$service && rec$service == "http";
}

event bro_init() {
 local filter: Log::Filter = [$name="http-only", $path="conn-http",
 $pred=http_only];
 Log::add_filter(Conn::LOG, filter);
}

Key components: writers

● In-core components, built as Zeek plugins

● Support a wide range of output destinations

- ASCII - Postgres

 - SQLite - Kafka

- None - ZeroMQ

- MongoDB

- RITA

Key components: writers

● In-core components, built as Zeek plugins

● Support a wide range of output destinations

- ASCII - Postgres

 - SQLite - Kafka

- None - ZeroMQ

- MongoDB

- RITA

Shipped
with Zeek

Key components: writers

● In-core components, built as Zeek plugins

● Support a wide range of output destinations

- ASCII - Postgres

 - SQLite - Kafka

- None - ZeroMQ

- MongoDB

- RITA

Shipped
with Zeek

Available
via bro-pkg

A log write
Log::write(Foo::LOG,rec)

A log write
Log::write(Foo::LOG,rec)

Log::Filter(
 $name = “http-only”,
 $path = “foo-http”,
 $pred = http_only
)

Log::Filter(
 $name = “default”,
 $path = “foo”
)

Log::Filter(
 $name = “kafka”,
 $writer =
 Log::WRITER_KAFKA,
 $path = “foo”
)

A log write
Log::write(Foo::LOG,rec)

Log::Filter(
 $name = “http-only”,
 $path = “foo-http”,
 $pred = http_only
)

Log::Filter(
 $name = “default”,
 $path = “foo”
)

Log::Filter(
 $name = “kafka”,
 $writer =
 Log::WRITER_KAFKA,
 $path = “foo”
)

foo.log file foo-http.log file foo Kafka topic

log_foo: event(rec: Info) handlers

A log write
Log::write(Foo::LOG,rec)

Log::Filter(
 $name = “http-only”,
 $path = “foo-http”,
 $pred = http_only
)

Log::Filter(
 $name = “default”,
 $path = “foo”
)

Log::Filter(
 $name = “kafka”,
 $writer =
 Log::WRITER_KAFKA,
 $path = “foo”
)

foo.log file foo-http.log file foo Kafka topic

Recent(ish)
additions

Part 3

Log extensions

● Runtime mechanism to add columns to logs

● Can operate globally or per-filter

● More control than with the redef approach

● See field-extension-*.bro btests in Zeek tree

● Good packaged example:
https://github.com/corelight/json-streaming-logs

https://github.com/zeek/zeek/blob/master/testing/btest/scripts/base/frameworks/logging/field-extension.bro
https://github.com/corelight/json-streaming-logs

Log extensions: in filter
type Filter: record {
 # ...

 # Function to collect a log extension value. If not specified,
 # no log extension will be provided for the log.
 # The return value from the function *must* be a record.
 ext_func: function(path: string): any &default=default_ext_func;

 # ...
};

Log extensions: global application
Some metadata we want to add to each log entry:
type Extension: record {
 write_ts: time &log;
 stream: string &log;
 system_name: string &log;
};

The extension callback, producing the values:
function add_extension(path: string): Extension {
 return Extension($write_ts = network_time(),
 $stream = path,
 $system_name = peer_description);
}

Register the callback as a global default:
redef Log::default_ext_func = add_extension;

Log extensions: resulting log
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2016-08-10-17-45-11
#fields _write_ts _stream _system_name ts uid ...
#types time string string time string ...
1300475173.475401 conn bro 1300475169.780331 ...
1300475173.475401 conn bro 1300475168.892913 ...

Plugin hooks

● Zeek plugins can hook into the logging framework

● Useful e.g. for fine-grained, stateful control

● HOOK_LOG_INIT for writer instantiation

● HOOK_LOG_WRITE prior to log writes

https://github.com/zeek/zeek/blob/master/src/plugin/Manager.h#L319
https://github.com/zeek/zeek/blob/master/src/plugin/Manager.h#L352

Quirks

Part 4

Filter predicates don’t chain well

event bro_init() {
 local filter: Log::Filter =
 [$name="http-only", $path="conn-http",
 $pred=http_only];
 Log::add_filter(Conn::LOG, filter);
}

● After filter creation there’s no API to manage them

● Assigning a new one means clobbering the old one

Filter predicates have no context

type Filter: record {
 # ...

 # Indicates whether a log entry should be recorded.
 pred: function(rec: any): bool &optional;

 # ...
};

● Closures would be a nice solution to this one

Beware of tweaking default filters

● Easy to create subtle last-tweak-wins scenarios

● Be mindful of existing modifications

Extension functions don’t see log data

type Filter: record {
 # ...

 ext_func: function(path: string): any
 &default=default_ext_func;

 # ...
};

● So they can’t make decisions based on them

● Example: tweak any log entry that has an IP
address, but not others

Summary
● Logging works on records, managed as streams,

controlled by filters, and directed by writers

● Mostly settled framework, with inconveniences
around predicates and extensions

● This talk skipped several features, e.g. rotation,
postprocessors

