Zeek’s Logging
Framework

Streams, filters, writers,
and related features

Christian Kreibich

christian@corelight.com
@ckreibich

https://twitter.com/ckreibich

Part 1

Background

Zeek

Packets

Events

> Zeek

Packets
> Zeek

Events

Packets
> Zeek

Events

Part 2

Logging basics

Set the stage

Create ID for our new stream:
redef enum Log::ID += { LOG };

Define (or redef, in order to extend) the record type to
This defines all log columns and data types:
type Info: record {
ts: time &log;
id: conn_id &log;
service: string &log &optional;
missed_bytes: count &log &default=0;
'

event bro_init() A
Create the stream. This adds a default filter.
Log: :create_stream(Foo::LOG, [Scolumns=Info,
Spath="fo00"]);

log.

Write a log entry

Identify suitable event and trigger write:
event connection_established(c: connection) {

local rec: Foo::Info = [Sts=network_time(), Sid=cS$Sid];
Log::write(Foo::LOG, rec);

Enjoy output file foo.log!

#separator \x09
#set_separator
#empty_field (empty)
#unset_field -

#path foo

#open 2019-04-07-00-27-05

#fields ts id.orig_h id.orig_p id.resp_h id.resp_p service missed_bytes
#types time addr port addr port string count

1052146262 .950001 203.241.248.20 3051 80.4.124.41 80 = 0

#close 2019-04-07-00-27-05

Or, with LogAscii: :use_json=T...

{"ts":1052146262.950001,
"id.orig_h":"203.241.248.20",
"id.orig_p" :3051,
"id.resp_h":"80.4.124.41",
"id.resp_p" :80,
"missed_bytes" :0}

Key components

e Streams identify data flows
o What to log

e Filters control their manifestations
o How / whether to log

e \Writers output the data
o Where to log

Key component: streams

Type defining the content of a logging stream.
type Stream: record {

A record type defining the log's columns.
columns: any;

Event that will be raised once for each log entry.
ev:. any &optional;

A file path inherited by any filters added to the stream
path: string &optional;

Key component: filters

A filter type describes how to customize logging streams.
type Filter: record {

Descriptive name to reference this filter.

name: string;

The logging writer implementation to use.
writer: Writer &default=default_writer;

Indicates whether a log entry should be recorded.
pred: function(rec: any): bool &optional;

Output path for recording entries.
path: string &optional;

Subsets of column names to record.
include: set[string] &optional;
exclude: set[string] &optional;

Many others -- take a look in scripts/base/frameworks/logging/main.bro!

Filter predicate example

function http_only(rec: Conn::Info) : bool {
Record only connections with successfully analyzed HTTP traffic
return rec?Sservice && recSservice == "http";

}

event bro_init() {
local filter: Log::Filter = [Sname="http-only", Spath="conn-http",
Spred=http_only];
Log::add_filter(Conn::LOG, filter);

Key components: writers

® In-core components, built as Zeek plugins

e Support a wide range of output destinations

- ASCI| - Postgres
- SQLite - Kafka
- None - ZeroMQ
- MongoDB

- RITA

Key components: writers

® In-core components, built as Zeek plugins

e Support a wide range of output destinations

- ASCI| - Postgres
: Shipped
-SQlite ik 7eek - Kafka
- None - ZeroMQ
- MongoDB

- RITA

Key components: writers

® In-core components, built as Zeek plugins

e Support a wide range of output destinations

- ASCI| - Postgres
, Shipped Available
-5Qlite with Zeek - Kafka via bro-pkg
- None - ZeroMQ
- MongoDB

- RITA

A log write

Log: :write(Foo: :LOG, rec)

A log write

Log: :write(Foo: :LOG, rec)

Log::Filter(Log::Filter(Log: :Filter(
Sname = “default”, Sname = “http-only”, Sname = “kafka”,
Spath = “foo” Spath = “foo-http”, Swriter =
) Spred = http_only Log: :WRITER_KAFKA,
) Spath = “foo”

)

A log write

Log: :write(Foo: :LOG, rec)
|

\ v v

Log::Filter(Log::Filter(Log: :Filter(
Sname = “default”, Sname = “http-only”, Sname = “kafka”,
Spath = “foo” Spath = “foo-http”, Swriter =
) Spred = http_only Log: :WRITER_KAFKA,
) Spath = “foo”
)

l |

foo.log file foo-http.log file foo Kafka topic

A log write

Log: :write(Foo: :LOG, rec) -~
N
| N\
\ v vy O
\
Log::Filter(Log::Filter(Log: :Filter(
Sname = “default”, Sname = “http-only”, Sname = “kafka”,
Spath = “foo” Spath = “foo-http”, Swriter =
) Spred = http_only Log: :WRITER_KAFKA,
) Spath = “foo”
)
()
' /
foo.log file foo-http.log file foo Kafka topic
7
7’

-
log_foo: event(rec: Info) handlers =

Part 3

Recentl(ish
additions

Log extensions

® Runtime mechanism to add columns to logs
e Can operate globally or per-filter
e More control than with the redef approach

® See field-extension-*.bro btests in Zeek tree

e Good packaged example:
https://github.com/corelight/json-streaming-logs

https://github.com/zeek/zeek/blob/master/testing/btest/scripts/base/frameworks/logging/field-extension.bro
https://github.com/corelight/json-streaming-logs

Log extensions: in filter

type Filter: record {
...

Function to collect a log extension value. If not specified,
no log extension will be provided for the log.

The return value from the function #*must* be a record.
ext_func: function(path: string): any &default=default_ext_func;

...

Log extensions: global application

Some metadata we want to add to each log entry:
type Extension: record {

write_ts: time &log;

stream: string &log;

system_name: string &log;

s

The extension callback, producing the values:
function add_extension(path: string): Extension {
return Extension(Swrite_ts = network_time(),
Sstream = path,
Ssystem_name = peer_description);

}

Register the callback as a global default:
redef Log::default_ext_func = add_extension;

Log extensions: resulting log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -

#path conn

#open 2016-08-10-17-45-11

#fields _write_ts _stream _system_name ts uid
#types time string string time string
1300475173.475401 conn bro 1300475169.780331

1300475173.475401 conn bro 1300475168.892913

Plugin hooks

e Zeek plugins can hook into the logging framework
e Useful e.g. for fine-grained, stateful control

e HOOK LOG_INIT for writer instantiation

e HOOK LOG WRITE prior to log writes

https://github.com/zeek/zeek/blob/master/src/plugin/Manager.h#L319
https://github.com/zeek/zeek/blob/master/src/plugin/Manager.h#L352

Part 4

Quirks

Filter predicates don’t chain well

e After filter creation there’s no APl to manage them

® Assigning a new one means clobbering the old one

event bro_init() {
local filter: Log::Filter =
[Sname="http-only", Spath="conn-http",
Spred=http_only];
Log::add_filter(Conn::LOG, filter);

Filter predicates have no context

® Closures would be a nice solution to this one

type Filter: record {
...

Indicates whether a log entry should be recorded.
pred: function(rec: any): bool &optional;

...

Beware of tweaking default filters

® Easy to create subtle last-tweak-wins scenarios

e Be mindful of existing modifications

Extension functions don’t see log data

e So they can’t make decisions based on them

e Example: tweak any log entry that has an IP
address, but not others

type Filter: record {
...

ext_func: function(path: string): any
&default=default_ext_func:

...
s

Summary

Logging works on records, managed as streams,
controlled by filters, and directed by writers

Mostly settled framework, with inconveniences
around predicates and extensions

This talk skipped several features, e.g. rotation,
postprocessors

