Robust regression and model compression + AliNDFunctionInterface TMVA wrapper

Marian Ivanov, Martin Kroesen
N dimensional analysis pipeline in ALICE
(TM)V interface wrapper

- quantiles
- prediction/confidence intervals
- model compression

(TM)V wrapper
ALICE N-Dimensional analysis pipeline

Reconstructed data
(ESD, AOD, custom sampled)

MC data:
Kinematic, track references, sampled data with MC true

DCS (slow control)
data (currents, voltage, rates)

Materialized views
(aggregated information):
QA summary, Logbook, calib DB)

Visualization/query - generic support exist (libSTAT)
- TFormula (TF1, TTreeFormula, AliTreeFormula), TStatToolKit
 (Metadata describing input data)
- AliTreePlayer
- AliPainter and AliDrawStyle(CSS)

New extensions:
- CSS library
- Multidimensional drawing support (Histogram, TFormula, TTree)
- Web server (static and jupyter interactive, bokeh)

Full analysis after histogram-ming can be interactive. N dimensional histogramming also interactive in case sampled input data used

Declarative analysis
Integration with RDataFrame (JIT, parallelism) under development
AliNDFunctionInterface: TMVA wrapper in ALICE analysis framework

AliRoot

- Simple and compact user interface
 - similar to TTree::Draw and Histogram::Fit queries
- Store all the data as ROOT objects in ROOT files (instead of weight files, no xml files)
 - possibility to store data in Alice calibration DB
- Easy usage providing TFormula/TTreeformula interface
 - possibility to combine/normalize/operate with other formulas (other TMVA, global fits, NDimensional local tables (e.g AliNDLocalRegression object))

Additional functionality to be provided:

- Local error estimates (prediction/confidence intervals), local robust estimators (bootstrapping)
- Quantile regression
- Combined/weighted evaluation, caching and model compression
 - optimally - compressed results to agree with model within the prediction
- New Python wrapper under development
Most estimators during prediction return \(E(Y|X) \), which can be interpreted as the answer to the question, what is the expected value of your output given the input?

- Quantile methods, return \(y \) at \(q \) for which \(F(Y=y|X)=q \) where \(q \) is the percentile and \(y \) is the quantile.

Quantile regression forest:
- https://scikit-garden.github.io/examples/QuantileRegressionForests/

Deep Quantile Regression
- Quantile Regression Loss function
 - March 2018
- https://towardsdatascience.com/deep-quantile-regression-c85481548b5a
Confidence Intervals for Scikit Learn Random Forests

- http://contrib.scikit-learn.org/forest-confidence-interval/
- https://github.com/scikit-learn-contrib/forest-confidence-interval
- forestci package
 - This package adds to scikit-learn the ability to calculate confidence intervals of the predictions generated from scikit-learn

Neural network prediction:

- 1: Delta method
- 2: Bayesian method
- 3: Mean variance estimation
- 4: Bootstrap
- For the moment, not aware of the standard procedure ...

Bootstrap approach

- provides “prediction” intervals for all methods
Combination of the different methods based on the local properties

- **Problem to solve - significant extrapolation error in some local regions**
 - e.g KNN conservative extrapolation less sensitive than BDT or MLP
 - local error estimate using bootstrap
 - combine methods using weighted average

Speed up MVA evaluation using caching:

- In case of small number of dimensions tabulated kernel local regression (AliNDLocalRegression)
- In case of multidimensional problem cache “results” and feed it into fast methods (Neural network?)
An ensemble is a collection of models whose predictions are combined by weighted (local) averaging or voting.

- Well known ensemble methods include bagging[2], boosting [14], random forests[3], Bayesian averaging [9] and stacking [17].

Ensembles - disadvantage: many ensembles are large and slow

Goal: compress the function that is learned by a complex model into a much smaller, faster model that has comparable performance (within prediction intervals)

- To be used in reconstruction
- The main idea behind model compression is to use a fast and compact model to approximate the function learned by a slower, larger, but better performing model.
- Unlike the true function that is unknown, the function learned by a high performing model is available and can be used to label large amounts of pseudo data.

Current assumption: KERAS to be used as a compression model.

Problem - current ROOT interface too slow. Need to speed up evaluation.

- lwttn library investigated

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
AliNDFfunctionInterface
Step 1: Register methods
Step 2: Register factory
Step 3: Fit Method(s)

Step x: Compress model

Step 4: Load /Register reader
Step 5: Eval MVA as an formula
Step 1: Register (regression/classification) methods

AliNDFunctionInterface::registerMethod() with parameters:

- std::string method: assign name
- std::string content: method registration string used in TMVA
- TMVA::Types::EMVA: type within TMVA

Example:

AliNDFunctionInterface::registerMethod("MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=20:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator", TMVA::Types::kMLP);

Experts provide default methods (for particular categories of problems)

- In example experts provided function MLPBNN as equivalent of other function (e.g. gauss or exp functions)
AliNDFunctionInterface::registerFactory() with parameters:

- std::string **factory**: assign name
- std::string **content**: string used in PrepareTrainingAndTestTree() to define sample size etc.
- If empty or unavailable: use default settings

Example:

```cpp
AliNDFunctionInterface::registerFactory("testFactory",
    "nTrain_REGression=50%:nTest_REGression=50%:SplitMode=Random:NormMode=NumEvents:!V");
```

Experts provide default methods
Step 3: Fit Method - Regression

Training and testing for Regression provided by:
AliNDFunctionInterface::FitMVAREgression()

Parameters:

- const char * output: output root file and directory separated by “#”
- TTree *tree: input tree
- const char *varFit: variable to fit in regression separated by “:”
- TCut cut
- const char * variables: variables used for training
- const char *methods: previously registered method names
- const char * factoryString: previously registered strings to define sample for training and testing

```c
Int_t AliNDFunctionInterface::FitMVAREgression(const char * output, TTree *tree, const char *varFit, TCut cut, const char * variables, const char *methods, const char * factoryString);
```

```c
AliNDFunctionInterface::FitMVAREgression("TMVA_RegressionOutput.root#test",regTree,"fvalue","var1>3","var1:var2","MLPBN:BDT","test_factory");
```
Step 3: Fit Method Regression

Interface:

```cpp
Int_t AliNDFunctionInterface::FitMVARegression(const char * output, TTree *tree, const char *varFit, TCut cut, const char *variables, const char *methods, const char *factoryString);
```

Example:

```cpp
AliNDFunctionInterface::FitMVARegression("TMVA_RegressionOutput.root#test", regTree, "fvalue","var1>3","var1:var2","MLPBNN:BDT","test_factory");
```
Load TMVA Reader via AliNDFunctionInterface::LoadMVAReader()

Weights from xml file and variables are stored to root file before and are loaded via LoadMVAReader to apply the methods to independent data

Parameters:

- `Int_t id`: to identify booked reader
- `const char *inputFile`: root file where parameters are stored
- `const char *method`: method to be booked
- `const char *dir`: directory of stored method

Example:

```c++
AliNDFunctionInterface::LoadMVAReader(0, "TMVA_Output.root", "PyRand
omForest", "cleanK0");
```
Step 5: Eval MVA as an formula

Evaluate MVA (variadic function)

- TMVA method to be loaded (registered using id) before
- EvalMVA(int id, T v, Args... args); (Regression)
- EvalMVAClassification(int id, T v, Args... args); (Classification)

Parameters: Reader ID (usually registered using hash value) and variables

Example usage:

- register TMVA as a function in tree and use it in queries

```c
treeMVA -
  >SetAlias("BDTRF","AliNDFunctionInterface::EvalMVAClassification(2, errChi2, v0ErrM, pointAngleN, mpt, armV0S, fRr+0)");

treeMVA->Draw("K0Delta>>hist(100,-0.1,0.1)","BDTRF>0")
```
Step 5: Eval MVA as an formula

Example:

```cpp
(treeMVA -
  >SetAlias("BDTRF","AliNDFunctionInterface::EvalMVAClassification(2,errChi2,v0ErrM,pointAngleN,mpt,armV0S,fRr+0)");

(treeMVA->Draw("K0Delta>>hist(100,-0.1,0.1)","BDTRF>0")
```

![Histogram of K0Delta for BDTRF>0](chart.png)

- **Entries**: 102796
- **Mean**: -0.001078
- **Std Dev**: 0.04454
Conclusion

N dimensional analysis pipeline in ALICE
(TM)MVA interface wrapper

- quantiles
- prediction/confidence intervals
- model compression

TMVA wrapper

- MVA regression almost as simple as gaussian fit

New MVA wrapper

- Work in progress
Backup
Step 3: Fit Method - Classification

Training and testing for classification provided by:
AliNDFunctionInterface::FitMVAClassification()

Parameters:

- const char * output: output root file and directory separated by “#”
- const char * input_trees: root file and tree separated by “#” - the trees define the classes
- const char * cuts: cuts for each tree separated by “:”. If only one tree available, the cuts define the classes
- const char * variables: variables used for training
- const char * methods: previously registered method names
- const char * factoryString: previously registered strings to define sample for training and testing

Example:

```
Int_t AliNDFunctionInterface::FitMVAClassification(const char * output, const char * inputTrees, const char * cuts, const char * variables, const char * methods, const char * factoryString)

AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root#cleanK0","TMVAInput.root#MVAInput","cleanK0:isBackground","errChi2:v0Er

Step 3: Fit Method - Classification

Interface:

```c
Int_t AliNDFunctionInterface::FitMVAClassification(const char * output, const char * inputTrees, const char * cuts, const char * variables, const char * methods, const char * factoryString)
```

Example one tree:

```c
AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root\#cleanK0","TMVAInput.root\#MVAInput","cleanK0:isBackground","errChi2:v0ErrM:pointAngleN:mpt:armV0S:fRr","BDTRF:PyRandomForest:KNN",""");
```

Example multiple trees:

```c
AliNDFunctionInterface::FitMVAClassification("TMVA_Output.root\#cleanK0","TMVAInput.root\#MVAInput1:TMVAInput.root\#MVAInput2","","errChi2:v0ErrM:pointAngleN:mpt:armV0S:fRr","BDTRF:PyRandomForest:KNN","");
```