N ; i,
¥\ [CMS /!

Recent developments in
deep-learning applied to
open HEP data

Giles Strong
IML Meeting, CERN - 30/11/2018

, 1L
W recnico il
=

"’7

giles.strong@outlook.com
twitter.com/Giles C_Strong
Amva4newphysics.wordpress.com
github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

Introduction

ML in HEP and ML innovation

® In recent years, ML innovation in HEP has been growing to solve our
domain-specific problems

® E.g. Object reconstruction, detector simulation, particle ID

® Although these problems are domain specific, their solutions normally rely
on applying and adapting techniques developed outside of HEP

® These techniques are continually being refreshed and updated, and are
normally presented on benchmark datasets for some specific task

® It is not always obvious whether they are appropriate for use in HEP

Higgs ML Kaggle Challenge

Launched in 2014, the Higgs ML Kaggle
competition was designed to help

Higgs Boson Machine Learning Challenge

stimulate outside interest in HEP Higgs ‘

chaHenge Use the ATLAS experiment to identify the Higgs boson
problems
The data contains simulated LHC collision Data Discussion Leaderboard Rules Team My Submissions

data for Higgs to di-tau and several
background processes

Participants were tasked with classifying S = A‘I' L A S
the events in order to optimise the Prizes A EXPERIMENT
APPrOXimate Median Signiﬁcance About The Sponsors e

Timeline
The competition was highly successful, and ~ wimes
helped introduce new methods to HEP, as

well as produce more widely used tools,

such as XGBoost

Run: 204153
Event: 35369265
2012-05-30 20:31:28 UTC

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://github.com/dmlc/xgboost

Investigation overview

Given the level of work that went into the solutions to the HiggsML

challenge, it is a nice HEP-specific benchmark dataset for evaluating the
possible benefits of new techniques

| will be using it to demonstrate the cross-domain applicability of several
recent methods:

® A method of quickly optimising the learning rate

® Two recent activation functions

® Learning rate scheduling
Data augmentation

New ensembling techniques (in backup slides)

Basic information

Dataset description, evaluation metric, and basic classifier

Higgs ML dataset

® ATLAS 2012 MC full simulation with Geant 4

® Signal: Higgs to di-tau

® Backgrounds: Z— rz, tt, and W decay

Events selected for the semi-leptonic channel: 77 — (e |) + 7,

® 250,000 labelled events for training, 550,000 unlabelled events for testing

® 3| features:

® 3-momenta of main final-state and upto two jets (p. ordered)

® High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera 7

http://opendata.cern.ch/record/328

Challenge aim

® Solutions must predict signal or background for each test event

® Solutions ranked via their Approximate Median Significance

® Quick, accurate, analytical approximation of full discovery significance

® s =sum of weights of true positive events (signal events determined by the solution

to be signal)

b = weights of false positive events (backgrounds events determined by the
solution to be signal)

® b _= constant term (set to 10 for the challenge)

S
AMS =4/2(s+ b+ by)log ((1+ b —s))

https://arxiv.org/abs/1007.1727

Classifier description

The basic classifier | use is a 4-layer, fully connected network trained using

Adam to minimise the sample-weighted binary cross-entropy of event
class predictions

An ensemble of 10 networks is trained on 80% of the training data

The remaining 20% is used to compare architectures and optimise the
threshold needed to classify the unlabelled test data

The code used is available here, along with Docker and Binder
instructions - (tag 1.0 = stable, reproduces results here)

Relevant notebooks will be linked during the presentation 9

https://github.com/GilesStrong/QCHS-2018/tree/1.0

Method testing

Learning rate finder

Learning rate finder

“[The Learning Rate] is often the single most important hyperparameter
and one should always make sure that it has been tuned’ - Bengio, 2012

Previously this required running several different trainings using a range of
LRs

The LR range test (Smith 2015 & 2018) can quickly find the optimum LR
using a single epoch of training

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

Learning rate finder

Loss

. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

Weight i

Learning rate finder

Loss

2. Eventually the network starts
training (loss decreases)

Weight i
13

Learning rate finder

At a higher LR the network can
no longer train (loss plateaus),
and eventually the network
diverges (loss increases)

Loss

N7

Weight i

14

Learning rate finder

® The optimum LR is the highest LR at which the loss is still decreasing

Further explanation in this |esson

0.00008

0.00007

0.00005

0.00004

10-° 1074 10-3 102
Learning rate

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s

Experiment

0.000080
0.000075
0.000070
0.000065

")
"]
o
—10.000060

* Train classifier in cross-validation for
three LR values (le-5, le-3, & le-1) for
fixed number of epochs

* Examine rate of convergence and mean
AMS

le-5 too slow for training, AMS = 1.97

le-1 too large to converge, AMS = |.07 -

le-3 about right, AMS = 3.26 —p-

0.000035

0.000038

0.000034

0.000033

25

5.0

75

10.0

Epoch

125

15.0

— Validation

17.5

— Validation

0.0

25

5.0

Experiment

Optimum LR as found using LR finder is compatible with experiment

Link to experiment notebook

Full training with of a RelLU-based model produces a validation AMS of 3.72

0.00008

0.00007

0.00006 2e-3 optimum

%]
8
-l

0.00005
1e-5 too low

0.00004

10— 1074 103 1072
Learning rate

Above 1e-2
too high

17

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/0_Investigation_Learning_Rate_Finder.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/1_Model_Baseline-ReLU.ipynb

Method testing

Activation functions

Choice of activation function

Rectified linear unit appears to be the
default choice in contemporary DL

Several modifications and new activations 4
have been proposed in recent years

The Scaled Exponential Linear Unit (SELU)
(Klambauer et al., 2017) allows networks
to self-normalise without need of batch
normalisation >

The paper demonstrates applicability to
wide range of tasks

19

https://arxiv.org/abs/1706.02515

Choice of activation function

The Swish activation function 3
(Ramachandran et al., 2017) also shown to
provide incremental improvement over 2

other activation functions

The paper reports results for image

classification and language translation, but 0
suggests is can be used inplace of RelLU in
any NN

20

https://arxiv.org/abs/1710.05941

Experiment

Train classifiers in CV for fixed number of epochs
Weight initialisation scheme set for each activation function

® LR Finder used to optimise LR for each activation function

® Mean AMS:
® RelLU: 3.28
¢ SELU: 3.18
¢ Swish: 3.45

Link to comparison

Full training with Swish produces a validation AMS of 3.78

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/2_Investigation_Activation_Function.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/3_Model_Swish.ipynb

Method testing

Learning-rate schedules

22

Learning-rate cycles

® Adjusting the LR during training is a
common technique for achieving better
performance

Maximum bound
(max_Ir)

¢ Normally this involves decreasing the LR
once the validation loss becomes flat

¢ Smith 2015 suggests instead to cycle the

LR between high and low bounds, which
can sometimes lead to super convergence
(Smith 2017)

¢ Smith 2018 introduces the |cycle schedule

which further improves the super
convergence

Minimum bound
(base_Ir)

stepsize

All three papers demonstrate on image 23
classification problems

Figure - Smith, 2015, arXiv:1506.01186

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1506.01186

Learning-rate cycles

000200
000175

000150

Loshchilov and Hutter 2016 instead
suggests that the LR should be decay as a
cosine with the schedule restarting once
the LR reaches zero

000025

Huang et al. 2017 later suggests that the

discontinuity allows the network to
discover multiple minima in the loss

05+ Single Model © m %Y Snapshot Ensemble -
24 Standard LR Schedule 044 Cyclic LR Schedule ‘:
surface i . N

0 2500 5000 7500 12500 15000 17500 20000

10000
iterations

2016 paper demonstrates on image and
EEG classification

o e
s0 50

Lower figure - Huang et al., 2017, arXiv:1704.00109

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1704.00109

Experiment

A previous experiment comparing the use

. . — LR=500.0

of different learning rate schedules I) 2
indicated that the cosine annealing with it et oo SO

restarts provide better performance 00000036

The experiment here showed only minor
improvements using the cosine annealing

® Validation AMS drops slightly (3.78->3.77) ****

but other improvements seen in training
and validation metrics

]
& 00000035

0.0000033

15
Epoch

25

https://github.com/GilesStrong/Smith_HyperParams1_Demo/blob/master/Notebooks/Sec4-1_Cyclical_LR.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/4_Model_Cyclical-LR.ipynb

Method testing

Data augmentation

26

Data augmentation

Data augmentation involves applying
transformations to input data such that
the a new data point is created, but the
underlying class is unchanged

This is well used in image classification to
artificially increase the amount of training
data (train-time augmentation), e.g
Krizhevsky et al. 2012

It can also be applied at test time by
predicting the class of a range of
augmented data and then taking an
average of the predictions.

27

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Data augmentation

® Correct application of augmentation relies

on exploiting invariances within the data:
domain specific

® At the CMS and ATLAS detectors, the

initial transverse momentum is zero,
therefore final states are produced
isotropically in the transverse plane: the
class of process is invariant to the rotation ' J

in azimuthal angle % x
¢ Similarly, the beams collide head on with : .

equal energy: therefore final states are |
produced isotropically in Z-axis

Experiment

® Train-time data augmentation is implemented here by randomly rotating
events in phi and randomly flipping in the Z and X-axes

® At test-time the mean prediction is taken over a set of 32 transformations

corresponding to 8 phi orientations for each possible set of flips in Z and
X

® Using data augmentation results in a very large improvement in validation
AMS:

® 3.97 when cosine annealing is used

® 3.88 using a constant LR (confirming the hypothesis that the LR schedule improves
performance)

29

More in-depth explanation of HEP-data augmentation here

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/5_Model_Data_Augmentation.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/5_Model_Data_Augmentation_without_CLR.ipynb
https://amva4newphysics.wordpress.com/2018/04/26/train-time-test-time-data-augmentation/

Comparison and conclusion

30

AMS evolution

® Cut on prediction computed by
bootstrapping the validation data (20% of
training set) 512 times and computing the
mean optimum cut 10

Background
0 Signal

|

¢ Can compute multiple AMSs:

Overall Val. AMS = maximum AMS on
=
validation data :’!: we >

’ R

Background Signal

Mean Val. AMS = mean maximal AMS on =
bootstrapped validation data

Val AMS at Mean cut = AMS on validation
data at bootstrap cut

0.4 0.6

Public AMS = AMS on public test set (18% Class prediction
of test set)

Private AMS = AMS on private test set 3
(72% of test set)

1
RelLU
Ensemble

2 3
Swish Swish
Ensemble Ensemble
Cos. Anneal.

Model

verall Val. AMS
—— Mean Val. AMS

— Val. AMS at mean cut

— Public AMS

—— Private AMS

---- 1st = 3.80581

---- 2nd = 3.78912

-=== 3rd = 3.78682

4 5

Swish Swish

Ensemble Ensemble
Cos. Anneal. Data Aug.

Data Aug. SWA 32

Comparison of methods

Solution New 1st place 2nd place 3rd place

Method 10 DNNs 70 DNNs Large number 108 DNNs
of BDTs

Train time 1.5 hours 24 hours 48 hours 3 hours

Inference time 40 min 1 hour 277 20 minutes

Score 3.818 3.806 3.789 3.787

Hardware Intel i7-6500U Titan GPU >=8-core CPU 2012 quad-core
requirements <8 GB RAM <24 GB RAM >=64 GB RAM laptop
(2016 laptop) (m2.4.xlarge)

33

https://github.com/melisgl/higgsml
https://github.com/TimSalimans/HiggsML
https://www.kaggle.com/c/higgs-boson/discussion/10481

Conclusion

® Even accounting for four years’ worth of improvements in software and

hardware, using the recent methods we are able to able to achieve similar
performance to the winning solutions in a much quicker time

¢ Still, main improvements beyond finding decent LR, however, come from
ensembling and data augmentation

® Data augmentation requires considering the symmetries of the inputs with
respect to the classes, but is worth doing

® Fast Geometric Ensembling or Stochastic Weight Averaging could be

promising methods of enesembling complex models with slow train time -
see backup slides

34

Status & further work

® Also investigated:
® Stochastic Weight Averaging (Wilson et al. Mar 2018) - in backups

® Data fixing - i.e. transforming every event to have the same orientation, as opposed
to data augmentation
® Full study documented in AMVA4NewPhysics Deliverable |.4

® Techniques re-explored and benefits reproduced in context of CMS
HL-LHC di-Higgs projection analysis (internal atm; under ARC review)

® Other ideas:
® Fast Geometric Ensembling (VWilson et al. Feb. 2018)

35

® Pseudolabelling (Lee, Mar. 2013)

Delphes pretraining

https://arxiv.org/abs/1803.05407
https://userswww.pd.infn.it/~dorigo/d1.4.pdf
http://cms.cern.ch/iCMS/jsp/openfile.jsp?tp=draft&files=AN2018_205_v7.pdf
http://cms.cern.ch/iCMS/jsp/openfile.jsp?tp=draft&files=AN2018_205_v7.pdf
https://arxiv.org/abs/1802.10026
http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf

* 4 k

This Report is part of a project that has received
funding from the European Union's Horizon 2020
research and innovation programme under grant
agreement N°675440

36

Backup slides

Pre-processing steps

Infinities, NaNs, and -999 (default value for absent jets) values replaced

with zeros

® Prevents bias of later pre-processing steps
Vectors transformed to Cartesian coordinates

® ¢ - cyclical and 7 - non-linear; NNs found to work best in fully-linear system
Random train-validation split, stratified by class

Standardisation and normalisation transformation fitted to training data,
applied to training, validation and testing sets

38

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Modules/Data_Import.py

Method testing

Stochastic weight-averaging

39

Fast ensembling

Inspired by Loshchilov and Hutter 2016 (SGD with restarts via cosine

annealing), Huang et al. 2017/ showed that an ensemble of NNs may be
built from a single training by saving a copy of the model before each
restart (snapshot ensembling)

Wilson et al. Feb. 2018 further improves on this idea by forcing the
weight evolution along curves of constant loss which are found to connect
loss minima (Fast Geometric Ensembling)

FGE was found to outperform snapshot ensembling, but one still incurs
increased inference time due to having to evaluate several models

Wilson et al. Mar 2018 introduces a method which approximates FGE .
using a single model: stochastic weight-averaging

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407

Stochastic weight averaging

Previous ensembling methods took
averages in model-space, SWA instead
makes the ensemble purely in
weight-space:

It finds that (cyclical) SGD models reach

regions of high performance, but never
find the optimal point in terms of
generalisation.

(Fast Geometric) ensembling then works

by moving the average prediction to the
optimal point by averaging over models.

SWA works by moving to the optimal
point by directly averaging the weights

10

Test error (%)

W
X

41

Figure - Wilson et al., Mar., 2018, arXiv:1803.05407

https://arxiv.org/abs/1803.05407

Stochastic weight averaging

Training begins as normal

Once the network begins to enter the

region of high performance a copy of the
weights is created

The original model continues to train via
SGD as normal but after each update, the
new weights are added in a running
average to the copy

All though shown on image classification,

the authors state that SWA is architecture
agnostic

Train loss

-5 0 5 0 15 20 25

Figures - Wilson et al., Mar., 2018, arXiv:1803.05407

https://arxiv.org/abs/1803.05407

Experiment

® When activated SWA showed large

decreases in validation-fold loss, and high
suppression of statistical fluctuations

¢ The mean AMS during CV (4.04) and the — Valigation

—— SWA Validation

overall AMS on the validation data (3.99) o000
were the highest seen so far

0.000036

® Running on the test data, showed large
drops in performance, however 0.00003¢

Loss

N.B.: | experimented with various setups
but the best one seemed to be starting
SWA after a fixed number of epochs and
to use a constant LR

0.000032

. . 43
Link to experiment

https://github.com/GilesStrong/QCHS-2018/blob/master/Notebooks/6_Model_SWA_Augmentation.ipynb

