
CMS R&D, IML meetings

ML as a Service for HEP
Valentin Kuznetsov, Cornell University

Machine Learning as a Service

✤ MLaaS is a set of tools and
services service providers offer to
clients to perform various ML
tasks, e.g. classification,
regression, DeepLearning, etc.

✤ Tools and services include: data
visualization, pre-processing,
model training and evaluation,
serving predictions, etc.

✤ Major tech companies (Goolge,
Amazon, Microsoft, IBM, etc.) and
plethora of start-ups provide
different types of MLaaS services.

!2Can we use existing MLaaS in HEP?

V. Kuznetsov, CMS R&D

Traditional ML workflow

✤ Traditional ML workflow consists of the following components

✤ obtain train, test, validation datasets in tabular (row-wise) data-format, most of the cases ML deal with
either CSV or NumPy arrays representing tabular data

✤ train ML model and for inference (separation leads towards MLaaS concept)

✤ Input datasets are usually small, < O(GB) and should fit into RAM of the training node

✤ HEP datasets may be quite large, at PB scale, they are stored in ROOT data-format, and can be distributed
across the GRID nodes

✤ Traditional ML frameworks can’t read HEP data in ROOT data-format

✤ it creates a gap between CS, ML and HEP communities

Train, Test
datasets

CVS or NumPy
ML Framework ML model Predictions

!3

V. Kuznetsov, CMS R&D

ML in HEP
✤ Training phase:

✤ we transform our data from ROOT data-format to CSV/NumPy for training purposes

✤ other pre-processing steps can be done at this phase

✤ we train our ML models using available ML frameworks, e.g. Python+Keras, TF, PyTorch

✤ we don’t use ROOT data directly in ML frameworks

✤ Inference phase:

✤ we access trained ML models via external libraries integrated into our frameworks, e.g. CMS
CMSSW-DNN, ATLAS LTNN libraries, etc.

✤ R&D for specialized solutions to speed-up inference on FPGAs, e.g. HLS4ML, SonicCMS, etc.

✤ Resource utilization constrained by run-time, can’t be used outside framework language (C++)

✤ Does these approaches sufficient?
!4

https://gitlab.cern.ch/mrieger/CMSSW-DNN
https://github.com/lwtnn/lwtnn
https://hls-fpga-machine-learning.github.io/hls4ml
https://github.com/hls-fpga-machine-learning/SonicCMS

V. Kuznetsov, CMS R&D

Step towards MLasS for HEP

✤ MLaaS for HEP should provide the following:

✤ natively read HEP data, e.g. be able to read ROOT
files from local or remote distributed data-sources

✤ utilize heterogeneous resources, local CPU, GPUs,
farms, cloud resources, etc.

✤ use different ML frameworks (TF, PyTorch, etc.)

✤ minimize infrastructure changes, should be able
to use it in different frameworks, inside or outside
framework boundaries

✤ serve pre-trained HEP models, à la model
repository, and access it easily from any place, any
code, any framework

MLaaS
train

MLaaS
inference

Experiment

Cloud/resource providers

Data repositories (GRID sites)

!5

ML as a Service for HEP R&D
✤ Data streaming and training tools: github.com/vkuznet/MLaaS4HEP

✤ Data inference tools: github.com/vkuznet/TFaaS
Goal:
•be able to read arbitrary size dataset(s) from ROOT files
•be able to plug ROOT data into existing ML frameworks
•be able to access pre-trained models anywhere

!6
V. Kuznetsov, CMS R&D

http://github.com/vkuznet/MLaaS4HEP
http://github.com/vkuznet/TFaaS

MLaaS for HEP

✤ Data Streaming Layer is
responsible for local or remote
data access of HEP ROOT files

✤ Data Training Layer is
responsible for feeding HEP
ROOT data into existing ML
frameworks

✤ Data Inference Layer provides
access to pre-trained HEP
model for HEP users

✤ All three layers are independent
from each other and allow
independent resource allocation

HDFS

ROOT
files

local
filesystem

Remote
storage

uproot

Data Reader

batches

XRootD

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

Input Jagged Array data Neural Network
with Dense Jagged Layers

Data Streaming Layer

Data Training Layer

Repository
of NN models

Data Inference Layer

!7V. Kuznetsov, CMS R&D

V. Kuznetsov, CMS R&D

Data Streaming Layer

✤ Recent development of DIANA-HEP uproot ROOT I/O library provides ability to read
ROOT data in Python, access them as NumPy arrays, and implements XrootD access

✤ Now we’re able to access ROOT files via XrootD protocol in C++, Python and Go

✤ MLaaS4HEP extends uproot library and provide APIs to read local and remote
distributed ROOT files and feed them into existing ML frameworks

✤ the DataReader and DataGenerator wrappers were created to read local or remote
ROOT files and deliver them upstream as batches

✤ random reads from multiple files are also supported (data shuffle mode)

✤ the ROOT data are read and represented as Jagged Arrays

✤ we explored both vector and matrix representations, see next slides
!8

https://github.com/scikit-hep/uproot
http://github.com/vkuznet/MLaaS4HEP
https://github.com/vkuznet/MLaaS4HEP/blob/master/src/python/reader.py#L188
https://github.com/vkuznet/MLaaS4HEP/blob/master/src/python/generator.py#L28

V. Kuznetsov, CMS R&D

Data Training Layer, part I

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

✤ We can read ROOT files via uproot

✤ Each event is a composition of flat and jagged
arrays

✤ Usually flat arrays size is less then jagged ones

✤ Such data representation is not directly suitable
for ML (dynamic dimension of jagged arrays
across events) and should be flatten to fixed size
inputs

✤ To feed these data into ML two-step procedure is
required:

✤ obtain dimensionality of jagged arrays

✤ flatten jagged array into fixed size array
!9

R&D

V. Kuznetsov, CMS R&D

Data transformation (vector wise)

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

jagged
branchpadding

jagged branches

rest of
jagged branches

with padding
flat branches

Transform jagged NumPy
array into flat one

!10

V. Kuznetsov, CMS R&D

Data transformation (matrix wise)

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

branch
vector

jagged branches representation as fixed size branch vectors in some (eta-phi) space

rest of branch
vectors

flat branches

Transform jagged NumPy
matrix form (eta-phi phase)

Transform matrix form
into vector

branch
vector w/ 0’s

phi

et
a

!11

V. Kuznetsov, CMS R&D

ML and Jagged Arrays
✤ In order to use ML we need to resolve how to treat Jagged Array input

✤ as array with padding values via vector-wise transformation

✤ need to know up-front dimensionality of every jagged array attribute (pre-processing
step)

✤ padding values should be assigned as NANs since all other numerical values can
represent attribute spectrum

✤ as a large sparse array via matrix-wise transformation

✤ need to choose granularity of matrix cells

✤ need to choose a view transformation (X-Y, eta-phi, etc.)

✤ it is possible to have collisions in a cell from different jagged array attributes which
happen to have the same cell coordinate (can be resolve via multi-dimensional matrix
representation, e.g. combining X-Y, Y-Z and Z-X views)

!12

V. Kuznetsov, CMS R&D

Data Training Layer, part II

✤ Keep data array with paddings (NaNs) and mask array with their locations

✤ mask array may be useful when training AutoEncoder type models where we can use
mask array to cast padded values after the decoding the data

✤ Either adjust ML framework or handle data accordingly for existing ML frameworks

✤ write a wrapper for existing ML framework to deal with two input arrays, e.g. for
training NN models we can assign NaNs to zeros to handle WxX multiplications

jagged
branchpadding

jagged branches

rest of
jagged branches

with padding
flat branches

data
array

mask
array

mask representing
real data values

mask representing
padded NAN values

ML
framework

R&D

!13

V. Kuznetsov, CMS R&D

Data Inference Layer

✤ Data Inference Layer is
implemented as TensorFlow as a
Service (TFaaS)

✤ Capable of serving any
TensorFlow models

✤ Can be used as global repository
of pre-trained HEP models

✤ Can be deployed everywhere

✤ Docker image and
Kubernetes files are provided

✤ TFaaS is available as part of
DODAS (Dynamic On
Demand Analysis Service)

!14

https://hub.docker.com/r/veknet/tfaas-public/
https://github.com/dmwm/CMSKubernetes/tree/master/kubernetes/tfaas
https://indico.cern.ch/event/587955/contributions/2937198/attachments/1682105/2702791/CHEP-2018-Spiga.pdf

V. Kuznetsov, CMS R&D

TFaaS features

✤ HTTP server written in Go to serve arbitrary TF model(s) using Google Go TF APIs

✤ users may upload any number of TF models, models are stored on local filesystem and
cached within TFaaS server

✤ TFaaS repository provides instructions/tools to convert Keras models to TF

✤ TFaaS supports JSON and ProtoBuffer data-formats

✤ Any client supporting HTTP protocol, e.g. curl, C++ (via curl library or TFaaS C++ client),
Python, can talk to TFaaS via HTTP end-points

✤ C++ client library talks to TFaaS using ProtoBuffer data-format, all others use JSON

✤ Benchmarks: 200 concurrent calls, throughput 500 req/sec for TF model with 1024x1024
hidden layers

✤ performance are similar to JSON and ProtoBuffer clients
!15

http://github.com/vkuznet/TFaaS

V. Kuznetsov, CMS R&D

Model inspection

!16

Integrated
Netron

model viewer

https://www.lutzroeder.com/ai/

V. Kuznetsov, CMS R&D

TFaaS HTTP end-points

✤ /json: handles data send to TFaaS in JSON data-format, e.g. you’ll use this API to fetch
predictions for your vector of parameters presented in JSON data-format (used by Python
client)

✤ /proto: handlers data send to TFaaS in ProtoBuffer data-format (user by C++ client)

✤ /image: handles images (png and jpg) and yields predictions for given image and model name

✤ /upload: upload your TF model to TFaaS

✤ /delete: delete TF model on TFaaS server

✤ /models: return list of existing TF models on TFaaS

✤ /params: return list of parameters of TF model

✤ /status: return status of TFaaS server
!17

V. Kuznetsov, CMS R&D

Python client
✤ upload API lets you upload your model and model parameter files to TFaaS

 tfaas_client.py —-url=url —-upload=upload.json # upload.json contains model parameters

✤ models API lets you list existing models on TFaas server

 tfaas_client.py —-url=url —-models

✤ delete API lets you delete given model on TFaaS server

 tfaas_client.py —-url=url —-delete=ModelName

✤ predict API lets you get prediction from your model and your given set of input parameters

 # input.json: {“keys”:[“attr1”, “attr2”, …], “values”: [1,2,…]}

 tfaas_client.py —-url=url —-predict=input.json

✤ image API provides predictions for image classification (supports jpg or png data-formats)

 tfaas_client.py —-url=url —-image=/path/file.png —-model=HEPImageModel
!18

V. Kuznetsov, CMS R&D

C++ client

#include <iostream>
#include <vector>
#include <sstream>
#include “TFClient.h” // part of TFaaS repository

int main() { // main function
 std::vector<std::string> attrs; // define vector of attributes
 std::vector<float> values; // define vector of values
 auto url = “http://localhost:8083/proto”; // define your TFaaS server URL
 auto model = “MyModel"; // name of your model in TFaaS

 // fill out your data
 for(int i=0; i<42; i++) { // the model I tested had 42 parameters
 values.push_back(i); // create your vector values
 std::ostringstream oss;
 oss << i;
 attrs.push_back(oss.str()); // create your vector headers
 }

 // make prediction call
 auto res = predict(url, model, attrs, values); // get predictions from TFaaS server
 for(int i=0; i<res.prediction_size(); i++) {
 auto p = res.prediction(i); // fetch and print model predictions
 std::cout << "class: " << p.label() << " probability: " << p.probability() << std::endl;
 }
}

CMS BuildFile.xml
<use name="protobuf"/>
<lib name="curl"/>
<lib name=“protobuf"/>

!19

V. Kuznetsov, CMS R&D

TFaaS: use cases

✤ TFaaS provides access to TF models independently from framework and infrastructure

✤ easy to integrate into existing workflow, e.g. Python or C++ or any other (via HTTP
protocol)

✤ C++ client library can be used to integrate within C++ framework, based on curl and
protobuf libraries

✤ Rapid development or continuous training of TF models and their validation

✤ clients can test multiple TF models at the same time

✤ TFaaS can be used as repository of pre-trained HEP TF models

✤ TFaaS deployment is trivial (via docker) and you can setup your TFaaS server at your premises,
e.g. on your local hardware or at a cloud provider (tested with DODAS) or as k8s deployment

✤ Can be used in distributed environment, i.e. clients can connect to TFaaS server(s) via HTTP
!20

MLaaS for HEP proof-of-concept
✤ Train toy models in PyTorch and TF (via Keras) using CMS NANOAOD data

✤ run code locally on laptop, lxplus and GPU node

✤ access data from local or remote ROOT files

✤ Serve model in TFaaS server deployed at CERN k8s cluster

!21
V. Kuznetsov, CMS R&D

V. Kuznetsov, CMS R&D

MLaaS workflow w/ user models

./workflow.py —files=files.txt —model=<model.py> —params=params.json

PyTorch example Keras/TF example

MLaaS
workflow

Input
ROOT files

User
model

MLaaS
parameters

!22

V. Kuznetsov, CMS R&D

Read remote ROOT file Init ML model Perform train cycle

Read another ROOT file

Perform another train cycle

!23

V. Kuznetsov, CMS R&D

Benefits of MLaaS approach
✤ Clear separation of streaming, training and inference layers

✤ dynamically and independently scale resources for training and inference layers

✤ Hide complexity of data transformation from ROOT I/O to ML

✤ user data-transformation can be dynamically loaded using user based functions

✤ Ability to use ML framework of your choice

✤ R&D work towards model transformation from one framework to another

✤ Inference results can accessible via HTTP protocol

✤ new models can be uploaded and used immediately without changes of existing
infrastructure

✤ can be used as a global repository of HEP pre-trained models shared across experiment
boundaries

!24

V. Kuznetsov, CMS R&D

Summary: MLaaS training

✤ MLaaS training layer is capable of reading remote ROOT files

✤ Data transformation from Jagged Array representation to vector form

✤ Random reads from multiple files (data shuffle mode)

✤ Customization: total number of events to read; data read chunk size; select or
exclude branches to read, choice of XrootD redirector

✤ Dynamically load user based models

✤ Planning: dynamically load user based pre-processing functions; visual
inspection of ROOT file content (via go-hep/groot); possible graphical UI to
build full workflow pipeline (via go-hep/groot); perform tests as part of
DODAS infrastructure

!25

V. Kuznetsov, CMS R&D

Summary: TFaaS inference

✤ TFaaS server natively supports concurrency, it organizes TF models in hierarchical
structure on local file system, and it uses cache to serve TF models to end-users

✤ no integration is required to include TFaaS into your infrastructure, i.e. clients
talks to TFaaS server via HTTP protocol (python and C++ clients are available)

✤ allow separation TF models from experiment framework, do not use experiment
framework run-time resources, dedicated resources can be used to scale TFaaS

✤ can be used as model repository, TFaaS architecture allows to implement model
versioning, tagging, …

✤ TFaaS server was tested with concurrent clients, we obtained 500 req/sec
throughput for mid-size model inference (subject of TF model complexity)

✤ TFaaS docker image and k8s deployment files are available
!26

V. Kuznetsov, CMS R&D

Summary

✤ MLaaS for HEP is a feasible and we demonstrated fully functional proof-of-concept
workflow

✤ MLaaS4HEP repository:

✤ Data Streaming Layer responsible for remote access to distributed ROOT files and
capable of streaming ROOT data via uproot ROOT I/O to upstream layers

✤ Data Training Layer provides necessary data transformation and batch streaming to
existing ML frameworks. The main problem is understanding how to deal with
Jagged Array in context of ML framework

✤ TFaaS repository (non HEP specific):

✤ Data Inference Layer: serves TF models via Go HTTP server and Google TF Go APIs

✤ ready to use (docker or k8s), provides basic TF model repository functionality
!27

http://github.com/vkuznet/MLaaS4HEP
http://github.com/vkuznet/TFaaS

R&D topics
✤ Model conversion: PyTorch, fast.ai, etc. to TensorFlow

✤ Model repository: implement persistent model storage, look-up, versioning, tagging, etc.

✤ MLaaS/TFaaS scalability: explore kubernetes, auto-scaling, resource provisioning
(FPGAs, GPUs, TPUs, etc.)

✤ Real model training model with distributed data (MLaaS with DODAS)

!28

Collaboration is welcome

https://arxiv.org/abs/1811.04492

V. Kuznetsov, CMS R&D

https://arxiv.org/abs/1811.04492

