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Machine Learning as a Service
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Can we use existing MLaa$S in HEP?

MLaaS is a set of tools and
services service providers offer to
clients to perform various ML
tasks, e.g. classification,
regression, DeepLearning, etc.

Tools and services include: data
visualization, pre-processing,
model training and evaluation,
serving predictions, etc.

Major tech companies (Goolge,
Amazon, Microsoft, IBM, etc.) and
plethora of start-ups provide
different types of MLaa$S services.



Tradittonal M1, workflow

Train, Test
datasets
ML Framework Predictions
CVS or NumPy

+ Traditional ML workflow consists of the following components

< obtain train, test, validation datasets in tabular (row-wise) data-format, most of the cases ML deal with
either CSV or NumPy arrays representing tabular data

+ train ML model and for inference (separation leads towards MLaa$S concept)
+ Input datasets are usually small, < O(GB) and should fit into RAM of the training node

+ HEP datasets may be quite large, at PB scale, they are stored in ROOT data-format, and can be distributed
across the GRID nodes

<+ Traditional ML frameworks can’t read HEP data in ROOT data-format

+ it creates a gap between CS, ML and HEP communities
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ML i HEP

+ Training phase:
+ we transform our data from ROOT data-format to CSV/NumPy for training purposes
+ other pre-processing steps can be done at this phase
+ we train our ML models using available ML frameworks, e.g. Python+Keras, TF, PyTorch
+ we don’t use ROOT data directly in ML frameworks
+ Inference phase:

+ we access trained ML models via external libraries integrated into our frameworks, e.g. CMS
CMSSW-DNN, ATLAS LTNN libraries, etc.

+ R&D for specialized solutions to speed-up inference on FPGAs, e.g. HLS4ML, SonicCMS, etc.
+ Resource utilization constrained by run-time, can’t be used outside framework language (C++)

+ Does these approaches sufficient?
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https://gitlab.cern.ch/mrieger/CMSSW-DNN
https://github.com/lwtnn/lwtnn
https://hls-fpga-machine-learning.github.io/hls4ml
https://github.com/hls-fpga-machine-learning/SonicCMS

Step towards Ml.asS for HEP

+ MLaaS for HEP should provide the following:

<

natively read HEP data, e.g. be able to read ROOT
files from local or remote distributed data-sources

utilize heterogeneous resources, local CPU, GPUs,
farms, cloud resources, etc.

use different ML frameworks (TF, PyTorch, etc.)

minimize infrastructure changes, should be able
to use it in different frameworks, inside or outside
framework boundaries

serve pre-trained HEP models, a la model
repository, and access it easily from any place, any
code, any framework
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MI. as a Service for HEP R&D

+ Data streaming and training tools: github.com /vkuznet/MI.aaS4HEP

+ Data inference tools: github.com /vkuznet/TFaaS

Goal:

® be able to read arbitrary size dataset(s) from ROOT files
® be able to plug ROOT data into existing ML frameworks
® be able to access pre-trained models anywhere
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http://github.com/vkuznet/MLaaS4HEP
http://github.com/vkuznet/TFaaS

Ml.aaS for HEP
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Data Streaming Layer

+ Recent development of DIANA-HEP uproot ROOT I/O library provides ability to read
ROOQOT data in Python, access them as NumPy arrays, and implements XrootD access

+ Now we’re able to access ROOT files via XrootD protocol in C++, Python and Go

+ MLaaS4HEP extends uproot library and provide APIs to read local and remote
distributed ROOT files and feed them into existing ML frameworks

+ the DataReader and DataGenerator wrappers were created to read local or remote
ROOT files and deliver them upstream as batches

+ random reads from multiple files are also supported (data shuffle mode)
+ the ROOT data are read and represented as Jagged Arrays

+ we explored both vector and matrix representations, see next slides

V. Kuznetsov, CMS R&D


https://github.com/scikit-hep/uproot
http://github.com/vkuznet/MLaaS4HEP
https://github.com/vkuznet/MLaaS4HEP/blob/master/src/python/reader.py#L188
https://github.com/vkuznet/MLaaS4HEP/blob/master/src/python/generator.py#L28

Data Training Layer, part 1 R&D

+ We can read ROQT files via uproot

+ Each event is a composition of flat and jagged
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array
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dimensionality

+ obtain dimensionality of jagged arrays

+ flatten jagged array into fixed size array
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Data transformation (vector wise
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Data transformation (matrix wise
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ML and Jagged Arrays

+ In order to use ML we need to resolve how to treat Jagged Array input
+ as array with padding values via vector-wise transformation

+ need to know up-front dimensionality of every jagged array attribute (pre-processing

step)

+ padding values should be assigned as NANSs since all other numerical values can
represent attribute spectrum

+ as a large sparse array via matrix-wise transformation
+ need to choose granularity of matrix cells
+ need to choose a view transformation (X-Y, eta-phi, etc.)

+ it is possible to have collisions in a cell from different jagged array attributes which
happen to have the same cell coordinate (can be resolve via multi-dimensional matrix

representation, e.g. combining X-Y, Y-Z and Z-X views)
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Data Training Layer, part I R&D
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+ Keep data array with paddings (NaNs) and mask array with their locations

+ mask array may be useful when training AutoEncoder type models where we can use
mask array to cast padded values after the decoding the data

+ Either adjust ML framework or handle data accordingly for existing ML frameworks

+ write a wrapper for existing ML framework to deal with two input arrays, e.g. for
training NN models we can assign NaNs to zeros to handle WxX multiplications
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Data Inference lLayer

+ Data Inference Layer is

implemented as TensorFlow as a
Service (TFaaS)

+ Capable of serving any
TensorFlow models

+ Can be used as global repository
of pre-trained HEP models

+ Can be deployed everywhere

+ Docker image and

Kubernetes files are provided

+ TFaaS is available as part of
DODAS (Dynamic On
Demand Analysis Service)

Home Download Models FAQ Contact
SCALABLE AND EFFICIENT REACH APIS
TFaaS$S built using modern technologie and scale  TFaaS provides reach and flexible set of APIs to
along with your hardware. It does not lock you efficiently manage your TF models. The TFaaS
into specific provider. Deploy it at your premises  web server supports JSON or Protobuffer data-
A : and control your use-case usage. formats to support your clients.
SERVICE SHOW ME SHOW ME

FROM DEPLOYMENT TO PRODUCTION

@ Deploy docker image:
docker run --rm -h “hostname -f° -p 8083:8083 -i -t veknet/tfaas
2) Upload your model:

curl -X POST http://localhost:8083/upload -F '"name=ImageModel' -F 'params=@/path/params.json’
-F "model=@/path/tf_model.pb' -F 'labels=@/path/labels.txt’

@) Get predictions:
curl https://localhost:8083/image -F 'image=@/path/file.png’' -F 'model=ImageModel’

Flexible configuration parameters allows you to adopt TFaaS deployment to any use case.

14
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https://hub.docker.com/r/veknet/tfaas-public/
https://github.com/dmwm/CMSKubernetes/tree/master/kubernetes/tfaas
https://indico.cern.ch/event/587955/contributions/2937198/attachments/1682105/2702791/CHEP-2018-Spiga.pdf

TFaaS features

+ HTTP server written in Go to serve arbitrary TF model(s) using Google Go TF APIs

+ users may upload any number of TF models, models are stored on local filesystem and
cached within TFaaS server

+ TFaaS repository provides instructions/tools to convert Keras models to TF

+ TFaaS supports JSON and ProtoBuffer data-formats

+ Any client supporting HTTP protocol, e.g. curl, C++ (via curl library or TFaaS C++ client),
Python, can talk to TFaaS via HTTP end-points

+ C++ client library talks to TFaaS using ProtoBuffer data-format, all others use JSON

+ Benchmarks: 200 concurrent calls, throughput 500 req/sec for TF model with 1024x1024
hidden layers

+ performance are similar to JSON and ProtoBuffer clients

15
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http://github.com/vkuznet/TFaaS

Model inspection

Home Download Models FAQ Contact

SUPPORTED MODELS COMPATIBLE MODELS

therefore will support any TF model you'll upload one. Please follow these steps to do that:

AS to it. The model should be uploaded in @ Download and install keras to TF converter
A :: ProtoBuffer (.pb) data-format along with model Save your Keras model in h5 format, j
i parameters. may see plenty of examples on the Intern

SERVICE

here or here
(3) Convert your model via TF converter

Existing models

» name: HEP_images
o mosielt A grap ﬁ
e labels: labels.txt

» description: HEP Image classification
« timestamp: 2018-09-12 08:52:49.766346927 -0400 EDT m=+14.839186997

e name: image

o model: tf_model_20180315.pb, graph view

» labels: labels.txt

» description:

« timestamp: 2018-09-12 08:52:49.766426507 -0400 EDT m=+14.839266575

TFaaS built around TensorFlow libraries and It is possible to convert Keras based model to TF

Input 1.1

Input

Integrated
Netron
model viewer

X

z = features
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https://www.lutzroeder.com/ai/

TFaaS H'T'TP end-points

+ [json: handles data send to TFaaS in JSON data-format, e.g. you’ll use this API to fetch
predictions for your vector of parameters presented in JSON data-format (used by Python
client)

+ [proto: handlers data send to TFaaS in ProtoBuffer data-format (user by C++ client)

+ [/image: handles images (png and jpg) and yields predictions for given image and model name
+ [upload: upload your TF model to TFaaS

+ [delete: delete TF model on TFaaS server

+ [models: return list of existing TF models on TFaaS

+ [params: return list of parameters of TF model

< [status: return status of TFaaS server

17
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Python chent

+ upload API lets you upload your model and model parameter files to TFaaS
tfaas _client.py ——url=url —upload=upload.json # upload.json contains model parameters
+ models API lets you list existing models on TFaas server
tfaas _client.py —url=url —models
+ delete API lets you delete given model on TFaaS server
tfaas _client.py —url=url —delete=ModelName
+ predict API lets you get prediction from your model and your given set of input parameters

# input.json: {“keys”:[“attrl”, “attr2”, ..], “values”: [1,2,..]}
tfaas client.py —url=url —predict=input.json
+ image API provides predictions for image classification (supports jpg or png data-formats)

tfaas _client.py —url=url —image=/path/file.png —model=HEPImageModel

V. Kuznetsov, CMS R&D
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C++ client S5 o

<lib name=“protobuf"/>

<iostream>

<vector>

<sstream>

TFClient.h” // part of TFaaS repository

main () { // main function
std: :vector<std::string> attrs; // define vector of attributes
std: :vector< > values; // define vector of values

url = “http://localhost:8083/proto”; // define your TFaaS server URL

model = “MyModel"; // name of your model in TFaaS

// £ill out your data

for ( i=0; i<42; i++) { // the model I tested had 42 parameters
values.push back (i) ; // create your vector values
std: :ostringstream oss;
oss << 1i;
attrs.push back(oss.str()); // create your vector headers

}

// make prediction call
res = predict(url, model, attrs, values); // get predictions from TFaaS server
for ( i=0; i<res.prediction size(); i++) {
auto p = res.prediction (i) ; // fetch and print model predictions
std: :cout << "class: " << p.label() << " probability: " << p.probability() << std::endl;

19
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1'FaaS: use cases

o2

TFaaS provides access to TF models independently from framework and infrastructure

+ easy to integrate into existing workflow, e.g. Python or C++ or any other (via HTTP
protocol)

+ C++ client library can be used to integrate within C++ framework, based on curl and
protobuf libraries

Rapid development or continuous training of TF models and their validation
+ clients can test multiple TF models at the same time

TFaaS can be used as repository of pre-trained HEP TF models

TFaaS deployment is trivial (via docker) and you can setup your TFaaS server at your premises,

e.g. on your local hardware or at a cloud provider (tested with DODAS) or as k8s deployment

Can be used in distributed environment, i.e. clients can connect to TFaaS server(s) via HTTP

V. Kuznetsov, CMS R&D
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ML.aaS for HEP proot-of-concept

+ Train toy models in PyTorch and TF (via Keras) using CMS NANOAOD data

+ run code locally on laptop, Ixplus and GPU node
+ access data from local or remote ROOT files

+ Serve model in TFaaS server deployed at CERN k8s cluster

V. Kuznetsov, CMS R&D
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Ml.aaS workilow w/ user models

PyTorch example Keras/TF example

lirom jarray.pytorch import JaggedArrayLinear lirom keras.models import Sequential
‘import torch from keras.layers import Dense, Activation
def model (idim) : def model (idim):

"Simple PyTorch model for testing purposes” R e E O REEERCR

model = torch.nn.Sequential (

JaggedArrayLinear (idim, 5), model = Sequential ([

Dense (32, input shape=(idim,)),

torch.nn.RelLU(), Activation('relu'),
torch.nn.Linear (5, 1), Dense (2),
) Activation('softmax'),
return model 1)

model.compile (optimizer='adam',
loss='categorical crossentropy',
metrics=['accuracy'])

return model

./workflow.py —files=files.txt —model=<model.py> —params=params.json

MLaaS

MLaaS Input

workflow ROOT files

parameters

22
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Read remote ROOT file Init ML model Perform train cycle

9112866.0

, "batch_size": 256, "selected branches": "", "ep
director": "root://cms-xrd-global.cern.ch"}
AOD/14Sep2018_ ver3-v1/60000/6FA4CC7C-8982-DE4C-BEED-C

'<_main__.DalaGenerator object at 0x1137c87d0> [09/0ct/2018:15:21:06]
model parameiers: {"hist": "pdfs", "verboGe": 1, "exclude branches":
ochs": 50, "{ fanch": "Events", "chunk sjze": 1000, "nevts": 3000, "
Reading root://cms-xrd-global.cern.ch//store/data/Run2018C/Tau/
90413312B35.root
+++ first pass: 2877108 events, (720/-flat, 232-jagged) branch
<reader.DataReader object at 0x116€37490> init is complete i

init DataReader in 21.474189043 s

1

, 2560 attrs
0.00181102752686 sec

TFaaS read from 0 to 1000
# 1000 entries, 955 branches
### input data: 2560

.8979845047 MB, 33.7 099495 sec, 0.115445520205 MB/sec, 85.2105054154 kHz

Sequential (
(0) : JaggedArrayLinear (in_features=2560, outgreatures=5, bias=True)
(1) : RelLU()

(2) : Linear(in_features=5, out features= bias=True)

)
x_train chunk of (1000, 2560) shape
x_mask chunk of (1000, 2560) shape
preds chunk of (1000, 1) shape

TFaaS read from 1000 to 2000
# 1000 entries, 955 branches, 3.87852573395 MB, 93.1551561356 sec, 0.0416351160241 MB/sec, 30.8851181121 kHz
x_train chunk of (1000, 2560) shape

x_mask chunk of (1000, 2560) shape

preds chunk of (1000, 1) shape

TFaaS read from 2000 to 3000

# 1000 entries, 955 branches, 3.90627861023 MB, 24.3904368877 sec, 0.1601561558 MB/sec, 117.96049465 kHz
x_train chunk of (1000, 2560) shape

x_mask chunk of (1000, 2560) shape

preds chunk of (1000, 1) shape

Read another ROOT file

Reading root://cms-xrd-global.cern.ch//store/data/Run2018C/Tau/NANOAOD/14Sep2018_ ver3-v1/60000/282E0083-6B41-1F42-B665-9
73DF8805DE3. root

+++ first pass: 368951 events, (720-flat, 232-jagged) branches, 2560 attrs

<reader.DataReader object at 0x1182cfd50> init is complete in 0.00151491165161 sec

init DataReader in 6.09789299965 sec

Perform another train cycle

TFaaS read from 1000 to 2000

# 1000 entries, 955 branches, 4.16557407379 MB, 61.9209740162 sec, 0.0672724248928 MB/sec, 5.9584172546 kHz
x_train chunk of (1000, 2560) shape

x _mask chunk of (1000, 2560) shape

preds chunk of (1000, 1) shape 23




Benetits of Ml.aaS approach

+ Clear separation of streaming, training and inference layers

+ dynamically and independently scale resources for training and inference layers
+ Hide complexity of data transformation from ROOT I/O to ML

+ user data-transformation can be dynamically loaded using user based functions
+ Ability to use ML framework of your choice

= R&D work towards model transformation from one framework to another
+ Inference results can accessible via HTTP protocol

= new models can be uploaded and used immediately without changes of existing
infrastructure

+ can be used as a global repository of HEP pre-trained models shared across experiment

boundaries

24
V. Kuznetsov, CMS R&D



Summary: Ml.aaS training

+ MLaaS training layer is capable of reading remote ROOT files
+ Data transformation from Jagged Array representation to vector form
+ Random reads from multiple files (data shuffle mode)

% Customization: total number of events to read; data read chunk size; select or
exclude branches to read, choice of XrootD redirector

+ Dynamically load user based models

+ Planning: dynamically load user based pre-processing functions; visual
inspection of ROOT file content (via go-hep/groot); possible graphical Ul to
build full workflow pipeline (via go-hep/groot); perform tests as part of
DODAS infrastructure
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Summary: T'FaaS mference

+ TFaaS server natively supports concurrency, it organizes TF models in hierarchical
structure on local file system, and it uses cache to serve TF models to end-users

* no integration is required to include TFaaS into your infrastructure, i.e. clients
talks to TFaaS server via HTTP protocol (python and C++ clients are available)

+ allow separation TF models from experiment framework, do not use experiment
framework run-time resources, dedicated resources can be used to scale TFaaS

+ can be used as model repository, TFaaS architecture allows to implement model
versioning, tagging, ...

+ TFaaS server was tested with concurrent clients, we obtained 500 req/sec
throughput for mid-size model inference (subject of TF model complexity)

+ TFaaS docker image and k8s deployment files are available

26
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Summary

+ MLaaS for HEP is a feasible and we demonstrated fully functional proof-of-concept
workflow

+ MLaaS4HEP repository:

+ Data Streaming Layer responsible for remote access to distributed ROOT files and
capable of streaming ROOT data via uproot ROOT I/O to upstream layers

+ Data Training Layer provides necessary data transformation and batch streaming to
existing ML frameworks. The main problem is understanding how to deal with
Jagged Array in context of ML framework

+ TFaaS repository (non HEP specific):
+ Data Inference Layer: serves TF models via Go HTTP server and Google TF Go APIs

+ ready to use (docker or k8s), provides basic TF model repository functionality

27
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http://github.com/vkuznet/MLaaS4HEP
http://github.com/vkuznet/TFaaS

Collaboration is welcome

https:/ /arxiv.org/abs/1811.04492

R&D topies

+ Model conversion: PyTorch, fast.ai, etc. to TensorFlow
+ Model repository: implement persistent model storage, look-up, versioning, tagging, etc.

+ MLaaS/TFaaS scalability: explore kubernetes, auto-scaling, resource provisioning
(FPGAs, GPUs, TPUs, etc.)

+ Real model training model with distributed data (MLaaS with DODAS)
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