New results from L3 using Levy-expansions

W.J. Metzger

Radboud University Nijmegen

with T. Csörgő, T. Novák, S. Lökös

4th Day of Femtoscopy Gyöngyös 30 October 2018

_

$e^+e^- \longrightarrow hadrons$

q

7

- a clean environment for studying hadronization
- everything is jets no spectators
- at $\sqrt{s} = M_Z$ almost all events are

2-jet $e^+e^- \longrightarrow q\overline{q}$

• event hadronization axis is the $q\bar{q}$ direction estimate by the thrust axis, *i.e.*, axis \vec{n}_{T} for which

$$\vec{r} = \frac{\sum |\vec{p}_i \cdot \vec{n}_{\rm T}|}{\sum |\vec{p}_i|}$$
 is maximal

- 3-jet events are planar.
 Estimate event plane by thrust, major axes.
 Major is analogous to thrust, but in plane perpendicular to n_T.
- Require $\vec{n}_{\rm T}$ within central tracking chamber $\Rightarrow 4\pi$ acceptance

or

BEC Introduction

$$R_{2} = \frac{\rho_{2}(p_{1},p_{2})}{\rho_{1}(p_{1})\rho_{1}(p_{2})} \Rightarrow \frac{\rho_{2}(Q)}{\rho_{0}(Q)} \qquad \qquad Q^{2} = (p_{1} - p_{2})^{2}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where
$$S(Q) = \int dx e^{iQx} S(x)$$
 — Fourier transform of $S(x)$
 $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent
and other effects reducing BEC

Assuming S(x) is a spherical Gaussian with radius $r \implies R_2(Q) = 1 + \lambda e^{-(Qr)^2}$

W.J. Metzger

BEC – 'Classic' Parametrizations

$$R_2 = rac{
ho(
ho_1,
ho_2)}{
ho_0(
ho_1,
ho_2)} = oldsymbol{\gamma}\cdot [1+\lambda G]\cdot (1+\epsilon Q)$$

- Gaussian $G = \exp\left(-(rQ)^2\right)$
- Edgeworth expansion $G = \exp\left(-(rQ)^2\right) \cdot \left[1 + \frac{\kappa}{2!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ $\kappa = 0.71 \pm 0.06$
- symmetric Lévy

$$G = \exp\left(-|rQ|^{lpha}
ight), \qquad 0 < lpha \leq 2$$

 α is index of stability

Gaussian if $\alpha = 2$ $\alpha = 1.34 \pm 0.04$

Cannot accomodate the anticorrelation seen as a dip in R_2 below unity in the region $0.6 < Q < 1.5 \, \text{GeV}$

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett. B663(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$ where for 2-jet events, $a = 1/m_t$ $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

- ► Let $\delta_{\Delta}(x^{\mu} \overline{x}^{\mu})$ be dist. of production points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_0^\infty d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_1(p)$
- ► In the plane-wave approx. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right] [x_1 - x_2]\right)\right)$ ► Assume $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ is very narrow — a δ -function. Then

$$R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$$

BEC in the au-model

Assume a Lévy distribution for H(τ)
 Since no particle production before the interaction, H(τ) is one-sided.
 Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha}\left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\,\omega\tau_0\right], \quad \alpha \neq 1$

where

- α is the index of stability, $0 < \alpha \leq 2$;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- ▶ Then, R₂ depends on Q, a₁, a₂

$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos\left[\frac{\tau_{0}Q^{2}(a_{1} + a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right)\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right] \\ \cdot \exp\left[-\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right]\right\} \cdot (1 + \epsilon Q)$$

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0} Q^{2} (\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Assume particle production begins immediately, $\tau_0 = 0$

► Then

$$R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$$
where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$
Compare to sym. Lévy parametrization:

$$R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left(-|rQ|^{-\alpha} \right) \right] (1 + \epsilon Q)$$

- R describes the BEC peak
- R_a describes the anticorrelation dip
- τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

au-model vs. sym. Lévy

► Simplified *τ*-model:

where

$$\begin{split} R_2(Q) &= \gamma \left[1 + \lambda \cos\left(\left(R_a Q \right)^{2\alpha} \right) \exp\left(- \left(R Q \right)^{2\alpha} \right) \right] \cdot \left(1 + \epsilon Q \right) \\ R_a^{2\alpha} &= \tan\left(\frac{\alpha \pi}{2} \right) R^{2\alpha} \end{split}$$

- R describes the BEC peak
- *R*_a describes the anticorrelation dip
- ► τ -model: Both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$ i.e. to the temporal distribution of production
- Symmetric Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \right]$$

$$\exp\left(-|rQ|^{-lpha}
ight)\right](1+\epsilon Q)$$

- r describes the BEC peak
- the anticorrelation dip is NOT described
- BEC is related to the spatial distribution of the production points

But suppose we did not have the τ -model (or don't believe it): What to do then?

Lévy polynomials

Expand about the Symmetric Lévy distribution using Lévy Polynomials, *I*_i

Then the Symmetric Lévy parametrization becomes De Kock, Eggers, Csörgö, PoS WPCF 2011 (2011) 033 $R_2(Q) = \gamma \left[1 + \lambda \exp\left(-|rQ|^{\alpha}\right) \left(1 + \sum c_i l_i\right)\right] \cdot \left(1 + \epsilon Q\right)$ Csörgö, Pasechnik, Ster, arXiv.1807.02897

li are orthonormal

Fits to succeeding orders provide improved χ^2 :

- Order 0: very bad χ^2
- ► Order 1: good χ²
- Orders 2-3 give: only marginal further improvement

30 Oct. 2018

p. 10

Lévy polynomials vs. τ -model

- χ² of order-1 Sym. Lévy polynomial fit is a bit better than τ-model
- but not much difference in fits difference is mainly for Q > 1.5 GeV

Lévy polynomials vs. τ -model

- τ -model describes dip by the cosine term
- Sym. Lévy by Lévy polynomial(s)

Lévy polynomials vs. τ -model

► Simplified *τ*-model:

$$R_2(Q) = \gamma \left[1 + \lambda \cos\left((R_a Q)^{2\alpha} \right) \exp\left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$$

where $R_a^{2\alpha} = \tan\left(\frac{\alpha \pi}{2}\right) R^{2\alpha}$

Symmetric Lévy polynomial parametrization: $R_2(Q) = \gamma \left[1 + \lambda \quad (1 + \sum c_i l_i) \quad \exp(-|rQ|^{-\alpha}) \right] \cdot (1 + \epsilon Q)$

$R_{\rm a}$	$2\alpha=0.88\pm0.02$	$\lambda = 0.61 \pm 0.03$	$\textbf{R}=0.78\pm0.04\text{fm}$
SL order 1	$\alpha = 1.07 \pm 0.06$	$\lambda = 0.16 \pm 0.03$	$\mathit{r}=0.54\pm0.03\mathrm{fm}$
SL order 2	$lpha=1.01\pm0.10$	$\lambda = 0.23 \pm 0.03$	$\mathit{r}=0.43\pm0.04\mathrm{fm}$
SL order 3	$lpha=$ 1.36 \pm 0.25	$\lambda = 0.22 \pm 0.03$	$\mathit{r}=0.54\pm0.05\mathrm{fm}$

Values of parameters differs between τ -model and Sym. Lévy and between orders of Sym. Lévy

Does expansion improve the τ -model?

Lacking (so far) an orthogonal polynomial expansion for the asymmetric Lévy distribution $H(\tau)$ of the τ -model, we use a derivative expansion:

$$\begin{aligned} R_2(Q) &= \gamma \left[1 + \lambda \left\{ \cos \left((R_a Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right. \\ &+ \sum c_n \frac{d^n}{dQ^n} \cos \left((R_a Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right\} \right] \cdot (1 + \epsilon Q) \end{aligned}$$

	order 0	order 1	order 0, R_a free	order 1, R_a free
α	$\textbf{0.44} \pm \textbf{0.01}$	$\textbf{0.43} \pm \textbf{0.01}$	$\textbf{0.41} \pm \textbf{0.02}$	$\textbf{0.40} \pm \textbf{0.03}$
<i>R</i> (fm)	0.78 ± 0.04	0.84 ± 0.05	0.79 ± 0.04	$\textbf{0.83} \pm \textbf{0.07}$
$R_{\rm a}$ (fm)	_	_	0.69 ± 0.04	0.60 ± 0.06
λ	0.61 ± 0.03	0.67 ± 0.05	$\textbf{0.63} \pm \textbf{0.03}$	1 at limit
γ	0.979 ± 0.002	0.979 ± 0.002	0.988 ± 0.005	0.992 ± 0.006
ε	0.005 ± 0.001	0.005 ± 0.001	0.001 ± 0.002	0.000 ± 0.002
<i>C</i> ₁	_	0.0008 ± 0.0005	—	0.072 ± 0.015
$_{\rm CL}^{\chi^2/\rm DoF}$	94.7/95 49%	90.9/94 57%	91.0/94 57%	89.3/93 59%

- Orders 0-1 \sim 1 σ difference
- Order 1 has somewhat better χ^2 , as does order 0, R_a free

W.J. Metzger

G

Gyögyös

p. 14

τ -model expansion

order	$\chi^2/{\rm DoF}$	CL
order 0	94.7/95	49%
order 1	90.9/94	57%
order 0, <i>R</i> _a free	91.0/94	57%
order 1, <i>R</i> _a free	89.3/93	59%

- Difference of two χ^2 is also a χ^2
- Small CL(²₁ − ²₂, DoF₁ − DoF₂) is reason to reject Hypothesis 1
- CL(94.7 90.9, 1 dof) = 5.1% Not small enough to reject order 0
- Other χ² differences are smaller; so CL larger
- expansion not needed

*R*_a free does not give significant improvement

Conclusions

- Expansions provide a test of whether the assumed function is (approximately) correct and if only approximately, help to locate the differences
- for 2-jet events
 - for τ-model expansion is not needed; assumption that H(τ) is an asymmetric Lévy distribution is OK
 - for symmetric Lévy order-1 expansion is required; modification of the symmetric Lévy required is similar to that of the τ-model

τ -model– 3-jet events

- ► for 2-jet events hadronizaton is basically 1+1 dimension, which lead in the τ -model to the dependence on τ , the longitudinal proper time $m_{\rm t}$, the transverse mass
- for 3-jet events this is more complicated
 So, we might expect the *τ*-model to work less well

τ -model expansion – 3-jet events

order	$\chi^2/{\rm DoF}$	CL
order 0 order 1 order 0 <i>B</i> , free	113.2/95 112.4/94 83.7/94	10% 9% 77%
order 1, R_a free	83.4/93	75%

- CL(113.2 112.4, 1 dof) = 37% CL(83.7 - 83.4, 1 dof) = 58% Order 1 gives no significant improvement expansion not needed
- ► However, CL(113.2 - 83.7, 1 dof)= 6 · 10⁻⁸
- ► *R*_a free does give significant improvement

Conclusions - 3-jet events

• τ -model expansion not needed

 \implies $H(\tau) =$ asymmetric Lévy distribution is OK

significant improvement is obtained letting R_a free *i.e.*, by lessening the connection of simplified \(\tau\)-model between the BEC peak and antisymmetric dip presumably due to the more complicated structure of the event

BACKUP

_

_

-

p. 20

$au_{0} > \mathbf{0}$?

jets	R_{a}	$ au_0$	$\chi^{\rm 2}/{\rm DoF}$	CL	
2 2 2 2	constr. free constr. $\tau_0 =$ free $\tau_0 =$	0 0 free 0.068 ± free 0.004 ±	94.7/95 91.0/94 91.4/94 0.033 fm 91.0/93 0.111 fm	49% 57% 56% 2σ 54% 0σ	Conclusion 2-jet: R_a free and/or $\tau_0 > 0$ do not give significant improvement Both free same as R_a free with $\tau_0 = 0$
3 3 3 3 3 3	$\begin{array}{l} \text{constr.}\\ \text{free}\\ \text{constr.}\\ \tau_0 =\\ \text{free}\\ \tau_0 = \end{array}$	0 0 free 0.196 ± free 0.116 ± CL(83.1	113.2/95 83.7/94 84.0/94 ≥ 0.026 fm 80.8/93 ≥ 0.052 fm 7 - 80.8, 1)	10% 77% 76% 7.5σ 81% 2.2σ = 9%	 Conclusion 3-jet: <i>R</i>_a free or τ₀ > 0 <i>do</i> give significant improvement <i>R</i>_a free and τ₀ > 0 give insignificant further improvement Difficult physically to understand how to have τ₀^{3-jet} > τ₀^{2-jet}

-

_

-

p. 21

Lévy polynomials in pp

