

Results and discussion of Bose-Einstein correlations in pPb from LHCb

Marcin Kucharczyk, <u>Bartosz Malecki</u> Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Day of Femtoscopy 2018 Gyöngyös, 30th October 2018

Outline

- LHCb experiment
- analysis method
- results from pp collisions
- summary

LHCb and BEC analyses

- LHCb detector:
 - single-arm spectrometer designed mainly to study CP violation in B physics
 - fully instrumented in 2 < η < 5 -> can serve as a **general purpose detector**
- BEC analyses at LHCb:
 - in proton-proton collisions @ 7 TeV (published:
 - in proton-lead collisions @ 5 TeV (ongoing)
- p-Pb data taking:
 - two beam modes (pPb/Pbp) with asymmetric beams

JHEP 12 (2017) 025

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

Event multiplicity bins

- BEC parameters depend on total multiplicity of an event
- VELO track multiplicity (N_{ch}) is a good probe of that quantity
- PVs are split into multiplicity bins based on N_{ch} distribution (optimized to ensure similar statistics in each bin)
- unfolding of N_{ch} allows for comparison between experiments after taking into account different η acceptances (model-dependent)
 - done for pp using PYTHIA 8 in $2 < \eta < 5$
 - planned also for pPb
- in pp: corresponding activity classes defined as fractions of N_{ch} distribution (independent of specific experiment features, e.g. efficiency, acceptance)

Datasets

рр				pPb						
 pp data 2011@7 TeV (40M minimum bias events) MC – PYTHIA 8 (20M minimum bias events) 3 bins in N_{ch} 				• • •	 pPb/Pbp data 2013@ 5 TeV (70M minimum bias events for each beam configuration) MC – EPOS (12M for each beam configuration) 6 bins in N_{ch} 3 bins in N + 3 bins in k (preliminary) 					
bin #	VELO N _{ch}	activity class	unfolded N _{ch}				bin #	VELO N _{ch}		
1	5-10	low	8-18					p-Pb	Pb-p	
2	11-20	medium	19-35				1 2	5 - 25 26 - 33	5 - 30 31 - 45	

3

21-60

high

36-96

46 – 55

56 - 65

66 - 80

81 - 140

3

4

5

6

34 – 40

41 - 47

48 – 54

55 - 80

Correlation function

• correlation function (experimentally):

$$C_2(Q) = \frac{N(Q)^{SAME}}{N(Q)^{REF}}$$

distribution for pairs of samesign pions from same PV [BEC effect present]

distribution for reference sample [no BEC effect]

- event-mixed reference sample is used:
 - pairs of pions from different events from PVs with same VELO N_{ch}
 - other correlations also removed -> construct double ratio (next slide)
- in this analysis **Levy parametrization** (with $\alpha = 1$) + long-range correlations:

$$C_{2}(Q) = N(1 \pm \lambda e^{-|RQ|^{\alpha}}) * (1 + \delta Q)$$

$$R - \text{radius of a spherical static source}$$

$$\lambda - \text{chaoticity parameter}$$
(0 - coherent source, 1 - chaotic emission)

$$N - \text{normalization factor}$$

$$\delta - \text{long-range correlations}$$

$$\alpha - \text{ index of stability}$$

Double ratio

• **double ratio** $r_d(Q)$ – an improved correlation function:

$$r_d(Q) = \frac{C_2(Q)^{DATA}}{C_2(Q)^{MC}}$$
 BEC effect not simulated in MC

- MC correlation function contains **similar pattern of distortions** as correlation function for data, therefore constructing double ratio:
 - reduces possible imperfections of the reference sample
 - eliminates second order effects to large extent
 - corrects for long-range correlations (if properly simulated)

Coulomb correction

- Coulomb effect is not simulated in MC
- in pp analysis: corrected by applying **Gamov penetration factor** $G_2(Q)$ to the Q distribution for signal pairs in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta}-1}$$
, where $\zeta = \pm \frac{\alpha m}{Q}$

• in pPb analysis: **Bowler-Sinyukov formalism** planned to be used to account for the Coulomb effect

BEC in pp collisions

[JHEP 12 (2017) 025]

Results – BEC pp (I)

fits to double ratio with Levy parametrization with α =1:

$$C_2(Q) = N(1 \pm \lambda e^{-RQ}) * (1 + \delta Q)$$

• clear **enhancement due to BEC** effect observed in *Q*->0

Activity class	<i>R</i> [fm]	λ
low	$1.01 \pm 0.01 \pm 0.10$	$0.72 \pm 0.01 \pm 05$
medium	$1.48 \pm 0.02 \pm 0.17$	$0.63 \pm 0.01 \pm 0.05$
high	$1.80 \pm 0.03 \pm 0.16$	$0.57 \pm 0.01 \pm 0.03$

Systematic uncertainty (~10%) dominated by generator tunings and pile-up effects.

JHEP 12 (2017) 025

Results – BEC pp (II)

JHEP 12 (2017) 025

Results show a trend compatible with previous observations at LEP and other LHC experiments:

- source size increases with activity
- λ decreases with growing activity

R and λ parameters measured in the forward region are slightly lower than results for central rapidity obtained by ATLAS

Summary

Bose-Einstein correlations studied for same-sign pions at 7 TeV

- first measurement in the forward region $2 < \eta < 5$
- observed trends compatible with previous results and predictions
- BEC parameters in the forward region slightly lower wrt central rapidities

BEC analysis for 5 TeV p-Pb collisions ongoing

- analysis planned in 6 N_{ch} and 3 N_{ch} + 3 k_{τ} bins (statistics sufficient)
- the τ-model will be used for fits, to study possible oscillations

Thank you for your attention

BACKUP SLIDES

Motivation

HBT interferometry in particle physics

• correlations in four-momenta (q_1, q_2) of indistinguishable particles emitted from the same source:

$$Q = \sqrt{-(q_1 - q_2)^2}$$

- due to symmetrization (Bose-Einstein correlations BEC) or antisymmetrization (Fermi-Dirac correlations – FDC) of the total wave function
- useful tool to probe the spatial and temporal structure of the hadron emission volume
- many results on BEC from SPS, LEP, RHIC, LHC (ALICE, ATLAS, CMS)
- LHCb measurement in a unique acceptance region

Offline selection

- false isMuon flag
- if tracks share all VELO hits -> keep one with best χ^2
- 2 < η < 5
- track $\chi^2 < 2.0$
- probNN(ghost) < 0.25
- probNN(kaon,proton) < 0.5
- probNN(pion) > 0.65

Pairs with Q<0.05 GeV are rejected (clones and ghosts removal).

BEC pp- systematics

Source	Low a	ctivity	Medium	activity	High activity	
	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]
Generator tunings	6.6	4.3	8.9	3.5	6.5	1.5
PV multiplicity	5.9	5.8	6.1	4.5	3.9	4.3
PV reconstruction	1.8	0.1	1.4	1.2	0.1	< 0.1
Fake tracks	0.4	1.1	1.7	3.9	1.1	0.8
PID calibration	1.3	0.3	0.8	0.6	2.7	0.9
Requirement on pion PID	2.9	1.8	1.6	0.1	1.3	0.1
Fit range at low- Q	1.2	1.0	1.2	1.5	1.8	2.7
Fit range at high- Q	1.8	0.1	2.1	0.8	2.4	1.4
Total	9.8	7.6	11.4	7.3	8.8	5.6