Double Higgs Production at Colliders Workshop

Fermilab

Summary of Theory Discussions

Javier Mazzitelli

University of Zurich^{UZH}

Lot's of theory talks:

Latest SM predictions, Javier Mazzitelli

- Trilinear Higgs self-coupling extraction from single Higgs measurements, Stefano Di Vita
- Trilinear Higgs self-coupling determination from single-Higgs differential measurements, Ambresh Shivaji
- Monte Carlo modelling of HH, Eleni Vryonidou
- Full NLO QCD corrections to ggF HH production, Julien Baglio
- Reinterpretation of non-resonant HH searches, Anamika Aggarwal Beyond the Standard Model HH production, Ian Lewis
- The least studied coupling in (double) Higgs physics, Ian Low
- Di-Higgs, Gravitational Waves, and LHC, Tathagata Ghosh
- A Dark Horse in Search for Non-Resonant Double Higgs, Jeong Han Kim
- Exotic decays in HH production, Brian Batell
- BSM multi Higgs, Nausheen Shah
- Interferences in searches for heavy Higgs bosons, Stefan Liebler ggHH generation and benchmarks, Alexandra Carvalho
- Interference effects in the alignement scenario, Marcela Carena Reflections on Double Higgs Production at the LHC, Carlos Wagner

Many parallel discussion sessions:

- 1. ATLAS+CMS combination (Luca C., David W., Javier M., B. Di Micco) Wednesday Room Ramsey
- based on 2015+2016 in preparation of the Run-2 legacy
- MC settings (NLO vs LO)
- Single H+HH combination
- Total cross section vs k_lambda + uncertainties

2) How to make results public (J. Allison, Max S., K. Leney) - Friday 1W (17:30 - 18:30)

- Tools to provide unfolded UL
 - How to handle bbb correlations?
- Resonant: Gamma vs Mx plot?
 - How to reweight different widths?
- cut based results
- differential results in m_HH (truth vs. reco)
- Special care for BDT-based results

Disclaimer: this is just a very brief summary of the results and discussions that I think have more overlap with the HXSWG activities

3) EFT (S. Di Vita, M. Gouzevitch, J. Robinson) [17:30 - 18:30] 11th floor ROC

- Which framework? More operators beyond O6
- How to make EFT useful for model testing?
- Which inputs from H and HH?
- Which topology? ggF/VBF single H background?
- Usage of shape benchmarks

4) BSM (M. Carena, K. Tschann-Grimm, Ian Lewis, Lian-Tao Wang, X. Carvalho) Wednesday 11th floor ROC - Room One West

- Benchmark models : which one ?
 - Resonant: Is graviton still a good benchmark?
 - Interplay with VV
- Motivations for H1->H2 h
- Interference with SM HH (EWK-S, 2HDM) benchmark

5) ATLAS/CMS objects/analysis strategies (M.Kagan, F. Micheli, C.Vernieri) [Thursday 1W (5:00-5:45)]

- Trigger strategies
- B-tagging and b-jets (regression)
- MET

MC settings: talk by Eleni Vryonidou, latest full NLO + PS results presented

Available implementations:

POWHEG-BOX VS: User-Processes-V2/ggHH/ MG5_aMC@NLO (contact Eleni)

NLO two-loop virtuals: 2D grid+interpolation (necessary to ensure reasonable running times)

- Small PS effects in NLO-accurate observables
- Very large effects for effectively LO-accurate distributions
- Also larger matching uncertainties
- Reliable predictions at low pThh, where FO fails
- Full NLO crucial to get accurate description of m_{hh} distribution

- Currently: CMS using LO+Pythia8, ATLAS NLOFTapprox with MC@NLO+Herwig++
- **Plan:** move to a full NLO generator (at latest for the ATLAS+CMS combination) Still no decision about Powheg or MC@NLO and Pythia or Herwig

Obs: ATLAS+CMS combination not before end of Run2, realistic time ~2020, after individual channels legacy papers are out

• Developments needed from the theory side:

Full NLO MC generator allowing κ_{λ} variations

 \rightarrow Needs κ_λ in virtuals (Gudrun et al.), probably available soon?

Total cross section: NNLOFTapprox presented, including threshold resummation

- Currently: NNLO+NNLL in the BI-HTL --including full NLO effects-- is used (YR4)
- Plan: move to the NNLO_{FTapprox} (current recommendation on the twiki, -8% difference from YR4) NNLL effect very small for μ=m_{hh}/2, we can stick with the fixed order prediction
- Also here κ_{λ} variations would be welcome

In the meantime results for the full NLO for different κ_{λ} values including theory uncertainties would be useful (for instance for $\kappa_{\lambda}=0,1,20$), probably available in a short time scale (essentially available in arXiv:1806.05162, just no uncertainties in the paper)

• Scans on κ_{λ} are very welcome, but more general deviations from the SM need to be included \neg

EFTs are the best way to address anomalous couplings -

- EFT model independent, but validity assumptions should be clearly recalled in WhP
- Both linear and non-linear approaches should be considered
- Consider both *Dim6*SM* and *Dim6*SM+Dim6^2* (latter justified if Dim8*SM suppresed)

Suggested to define classes of models and operators to include for each of them

- Operators affecting only Higgs observables at LO to be included at least
- Chromomagnetic or 4 fermions (with tops) operators not considered until now (expected to be small in some class of models) but can also be considered in future analyses
- Of course, independently of including or not κ_{λ} loop effects on H production, single H observables need to be included in the fit to constrain the other operators affecting HH

What about κ_λ constraints from single H? Talks by Stefano Di Vita, Ambresh Shivaji

Using only inclusive single H data, κ_{λ} effects in single H are not relevant in a global fit \frown

Specially for studies with large κ_{λ} , important to include κ_{λ} effects in (differential) single Higgs

Including differential H data improves a lot the situation

Ultimately a global fit will be needed: HH+H+aTGC

First (training) step: Consider HH+ttH, let κ_{λ} and κ_t float for a combined fit including EW corrections

Warning:

Bounds on κ_{λ} from simplifed fits have a physical interpretation only in very non-generic scenarios!

Presentation of the results

- Shape benchmarks Talk by Ale
 - Talk by Alexandra Carvalho

Keep providing these benchmarks, maintain a **tool** to easily convert **limits on benchmarks** to limit for combination of **Wilson coefficients**

Check if Chromomagnetic shape is covered by one of the benchmarks

• Theorists would like experiments to provide information on m_{hh}, something like limit/bin Dedicated discussion session on this topic

BSM in double Higgs

New physics in the loop

New colored scalars can dramatically enhance HH production

However it's hard to remain consistent with single H limits

Stops are colored and couple strongly to Higgs, can have important contribution to HH production

Stops loops can produce an O(1) enhancement, particularly if top Yukawa is enhanced

[Talk by Carlos Wagner]

New resonances

• Simplest model: add a real singlet scalar

$$\begin{split} V &= -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + \frac{a_1}{2} \Phi^{\dagger} \Phi S + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2 \\ &+ b_1 S + \frac{b}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4 \end{split} \text{[Talk by Ian Lewis]}$$

- Free parameters: two masses, mixing angle, potential parameters In regions of parameter space HH can be its dominant decay mode
- Interference effects between SM and new resonances can be significant
 [Talk by Marcela Carena]

If there is a phase shift between SM and new physics amplitudes \rightarrow on-shell interference effect affecting total rate

Production of exotic Higgs bosons also deserves attention

Well motivated from the theoretical point of view, more difficult experimentally

Simple model: complex singlet \rightarrow three physical scalar bosons h₁(125), h₂, h₃ [Talk by Ian Lewis]

Possible to have $h_2 \rightarrow h_1 h_3$ (in fact it's the only way to produce h_3 in the limit in which it does not mix)

Also: 2HDM+S well motivated extended Higgs sector [Talk by Mausheen Shah] H decays to h₁₂₅h₁₂₅, h₁₂₅Z, ZZ suppressed due to alignement

H decays to h h_{125} and hZ final states NOT supressed

BSM in double Higgs

Some items in the summary of the discussion session:

• Simple models that could be included in searches:

S-channel resonances: 1) spin-0, 2) spin-2 higgsino \rightarrow hh+MET or higgsino \rightarrow hh+jets Also X \rightarrow h₁h₂ or X \rightarrow Vh₂, with h₂ not the 125GeV boson

- Move away from RS models, which were firstly introduced to have sizeable cross sections to be probed
- Action item: go for simplified models

