$t\bar{t}H$ analyses in ATLAS Part 1: $t\bar{t}H$ with $H \rightarrow b\bar{b}$, WW, $\tau\tau$

Ximo Poveda (CERN)

Top Quark Physics at the Precision Frontier Fermilab May 16, 2019

Top quark Yukawa coupling (HAWR) (HAWK) (HAWK) (HAWK) (HAWK) (INDO) (INDO) (INDO) (INDO) (INDO) (INDO) (INDO) (Higgs p^T :

- Yukawa coupling of the Higgs boson and fermions: proportional to fermion mass
	- \circ Top quark is heaviest fermion in the SM \rightarrow Largest Yukawa coupling: $\lambda_t \approx 1$

NNLO + NNLL QCD NLO EW NALL QC
Ann an Alba an

- g Only coupling that cannot be observed in Higgs decays
- marrect constraints on the top quark Yukawa coupling
extracted from gluon-gluon fusion and $H \to \gamma \gamma$ decays • Indirect constraints on the top quark Yukawa coupling
	- \circ Resolve the loops, assuming SM contributions only

g

g

 70000000

mmmm

- $t\bar{t}H$ production: best direct way to measure the top quark Yukawa couplin<mark>g</mark>
	- \circ Tree-level process, cross-section proportional to λ_t^2
- Complementary approaches, needed disentangle possible BSM effective and the complementary
	- rvew r nysics could mauce dev
vector-like quarks, SUSY, etc. • New Physics could induce deviations from the SM predictions: compositeness, • Complementary approaches, needed disentangle possible BSM effects

	• New Physics could induce deviations from the SM predictions: compositer

	• Different higher dimension operators would affect differently ggF and $t\bar{$
	- or-like qualiks, JOJT, etc.
erent higher dimension operators would affect differently ggF and $t\bar{t}H$ \bullet Different higher dimension operators would affect differently ggF and $t\bar{t}H$

t

H

Searching for $t\bar{t}H$ production

• Combination of $t\bar{t}+H$ decays \rightarrow Complex final states, with many objects: jets, b-jets, light leptons (ℓ), hadronic taus (τ_{had}), photons

- $t\bar{t}H$ cross-section: 0.5 pb
- Large irreducible backgrounds: Split into tt+HF categories depending
	- \circ ttbb: $\mathcal{O}(15)$ pb
 \circ ttp: ttp: $\mathcal{O}(15)$
	- $t\bar{t}W$, $t\bar{t}Z$: $\mathcal{O}(1.5)$ pb

This talk:

- $t\bar{t}H(b\bar{b})$ ℓ +jets (36 fb⁻¹): [Phys. Rev. D 97 \(2018\) 072016](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-03/)
- t $\bar{t}H(WW,\tau\tau)$ multilepton (36 fb $^{-1}$): [Phys. Rev. D 97 \(2018\) 072003](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-02/)

Next talk: $t\bar{t}H(\gamma\gamma)$

$t\overline{t}$ H, \overline{H} \rightarrow $b\overline{b}$

[Phys. Rev. D 97 \(2018\) 072016](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-03/)

Top Pair Branching Fractions

Decavs of a 125 GeV Standard-Model Higgs boson

$t\bar{t}H(bb)$: Strategy

- Large $H \rightarrow b\bar{b}$ branching ratio (∼58%), and leptonic top decays
- Large irreducible background from $t\bar{t}$ $+$ heavy flavour (HF) production

$t\bar{t}$ + HF modelling:

- Nominal MC: NLO Powheg+Pythia8, modelling studied with 7/8/13 TeV data
- Split in number of HF jets at particle level: $t\bar{t}+>1b$, $t\bar{t}+>1c$, $t\bar{t}+$ light

- $t\bar{t}$ + $>$ 1b: relative sub-components reweighted to $t\bar{t}b\bar{b}$ Sherpa+OpenLoops: NLO, 4-flavour scheme (massive b-quarks, $g \to b\bar{b}$ from ME)
- $t\bar{t}$ +>1b and $t\bar{t}$ +>1c normalizations floating
- Background modeling systematics:
	- NLO generator: Sherpa5F vs. nominal
○ Parton shower: Powheg+Herwig7/Pvtl
	- Parton shower: Powheg+Herwig7/Pythia8
	- \circ $t\bar{t}$ +>1b: Sherpa4F vs. nominal

Event selection

b-tagging:

- 4 working points: loose (85% eff.), medium, tight, very-tight (60% eff.)
- Rejection factor for c-jets [light jets]: $3 \rightarrow 35$ [30 \rightarrow 1500]
- *b*-tagging discriminant built as:

Event classification:

- 2 ℓ opposite-sign (OS) channel: \geq 3 jets and \geq 2 *medium b*-tagged jets
- Higgs reconstructed correctly only in 46% \bullet 1 ℓ channel:

- \circ High- p_T category:
	- 'Boosted' Higgs and top candidates (large- R reclustered jets), plus a loose b-tagged jet
	- Higgs candidate ($p_T > 200$ GeV): two *loose b*-tagged jets
	- Top candidate ($p_T > 250$ GeV): loose b-tagged $+ >1$ non-b-tagged jets
- \circ If failing the 'boosted' selection \rightarrow 'Resolved' event:
- \geq 5 jets and \geq 2 *very-tight b*-tagged jets or \geq 3 *medium* b -tagged jets

Signal/Control regions

- Events in the 1 ℓ resolved category and 2 ℓ channel are classified in SR/CR varying the requirements on the b-tagging discriminant
- Nine Signal Regions
	- \circ *t* $\overline{t}H$ signal purity: 1.6%-5.4%
- Ten Control Regions defined for $t\bar{t}+b$, $t\bar{t}+>1c$ and $t\bar{t}+$ light loosening the b-tagging requirements

MVA analysis: Multi-stage BDT

- 'Classification BDT' to separate signal from background
- Input variables:
	- \circ Discrete *b*-tagging discriminant
	- General kinematic variables
	- \circ 'Reconstruction BDT' (combining jets to reconstruct $t\bar{t}H(b\bar{b})$ system): output score, variables associated to its H/top candidates
	- Likelihood and Matrix Element Method discriminators (only in some resolved SRs)

Fit Model

- Simultaneous profile likelihood fit to all SRs and CRs
	- SRs binned in 'classification BDT'
	- \circ CRs: single bin, except $t\bar{t} + \geq 1$ c 1 ℓ -CRs (binned in $H_{\sf T} = \sum_{\rm jet} p_{\sf T}^{\rm jet}$
- Normalization factors for $t\bar{t}+>1b/>1c$ constrained in the fit, with no prior uncertainty:
	- \circ $t\bar{t}$ +>1*b*: 1.24 \pm 0.10
	- $t\bar{t} + \geq 1c$: 1.63 ± 0.23

Results

- Analysis dominated by systematics, mainly $t\bar{t}$ + $>$ 1b background modelling (46% impact on signal strength $\mu = \sigma/\sigma_{SM}$)
- Constraints for nuisance parameters (NPs) associated to larger variations than observed in data
- Significance: 1.4σ (exp: 1.6σ)
- Signal strength: $\mu_{\text{t\bar{t}H}} = 0.84^{+0.64}_{-0.61}$

ttH multilepton

[Phys. Rev. D 97 \(2018\) 072003](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-02/)

Top Pair Branching Fractions

Decavs of a 125 GeV Standard-Model Higgs boson

$t\bar{t}H$ multilepton: Strategy

- Targeting $H \to WW^*, \tau\tau, ZZ^*$ decay modes, combined with leptonic $t\bar{t}$ decays
- Main background: $t\bar{t} \Rightarrow$ Rely on signature with same-sign (SS) or three leptons $+ b$ -tagged jets
- Orthogonal SRs varying the number of light leptons (ℓ) and hadronic taus (τ_{had})

- ℓ -only channels more sensitive to $H \to WW^*$ decays
- τ_{had} channels more sensitive to $H \rightarrow \tau \tau$

$t\bar{t}H$ multilepton: Strategy

- Signal to background ratio ranging from few % to >40% (4 ℓ , 3 ℓ +1 τ)
- Very different background contributions:
	- \circ Fake/non-prompt light and τ_{had} leptons
	- \circ Irreducible backgrounds: $t\bar{t}W$, $t\bar{t}Z$, other rare SM processes

- Sensitivity enhanced with BDTs
- 2ℓ SS0 τ : combination of two BDTs
	- \circ ttH vs. tt
	- \circ ttH vs. ttW/Z
- $3/\theta\tau$: 5-dimensional multinominal BDTs $(t\bar{t}H,$ $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}$, VV) \rightarrow 5 categories

Background estimation

Main background sources:

- Processes with all prompt ℓ/τ_{had} (mainly $t\bar{t}W/Z$) \rightarrow Estimated with MC
- Estimated with data-driven techniques:
	- Events with fake/non-prompt light leptons:
		- Mainly from semileptonic *b*-hadron decays, also from photon conversions
	- Events with fake tau leptons:
		- Mainly from light flavour jets and electrons mis-identified as τ_{had}

Background: $t\bar{t}W/Z$

- Estimated using NLO MC samples, with theory/modelling uncertainties
- Validated in several regions, such as 3ℓ t $t\bar{t}W/Z$ CRs

Free-floating $t\bar{t}W/Z$ normalization: 15% loss of sensitivity for $t\bar{t}H$, $t\bar{t}W/Z$ consistent with SM predictions

Background: Fake/non-prompt light leptons

2ℓ SS/3 ℓ channels:

- Fully data-driven estimate with a loose-to-tight matrix method
- Real/fake efficiencies measured in $t\bar{t}$ data: $e^{\pm}\mu^{\mp}$ (real), $e^{\pm}\mu^{\pm}+\mu^{\pm}\mu^{\pm}$ (fakes)
- Validated in various regions, such as low jet multiplicity

Fit setup

- Simultaneous fit to the 12 signal and control regions
- BDT shape used as discriminant in 5 of the SRs

${\sf Results}$

- Most relevant uncertainties on the signal strength:
- Signal modelling (dominated by scale uncertainties)
- Jet energy scale and resolution
- \circ Non-prompt ℓ estimation (with large contribution from limited CR statistics)
- Significance w.r.t background-only hypothesis: 4.1σ (exp: 2.8 σ)
- Signal strength: $\mu(\text{t\bar{t}H}){=}1.6{\pm}0.3(\text{stat.}){+0.4\atop -0.3}(\text{syst.})$
- Most of the channels still dominated by statistical uncertainties $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x})$ and 2.3, respectively. The cross-check analyses are founded signal strengths in the cross-check analyses are founded signal strengths in the cross-check analyses are founded signals.

Summary

- Measuring $t\bar{t}H$ is the best way to probe the top-quark Yukawa coupling
- Extensive program of Run-2 $t\bar{t}H$ searches, now turning into measurements
- $t\bar{t}H(b\bar{b})$:
	- \circ Large signal yields but also very large and challenging $t\bar{t}b\bar{b}$ background
	- Sensitivity limited by systematics
- $t\bar{t}H$ multilepton $(H \to WW^*, \tau\tau)$:
	- \circ Good compromise between signal and background levels \circ Comparable impact of systematics and statistics for the
	- Comparable impact of systematics and statistics for the most sensitive channels (2ℓ SS0 τ , 3ℓ SS0 τ), other channels are limited by statistics

• $t\bar{t}H(\gamma\gamma)$ (and more): next talk by Haichen