$t\bar{t}H$ analyses in ATLAS Part 1: $t\bar{t}H$ with $H \rightarrow b\bar{b}, WW, \tau\tau$

Ximo Poveda (CERN)

Top Quark Physics at the Precision Frontier Fermilab May 16, 2019

Top quark Yukawa coupling

- Yukawa coupling of the Higgs boson and fermions: proportional to fermion mass
 - $\circ~$ Top quark is heaviest fermion in the SM \rightarrow Largest Yukawa coupling: $\lambda_t\approx 1$
 - $\circ~$ Only coupling that cannot be observed in Higgs decays
- Indirect constraints on the top quark Yukawa coupling extracted from gluon-gluon fusion and $H\to\gamma\gamma$ decays
 - $\circ\;$ Resolve the loops, assuming SM contributions only

g 0000000

^g 00000000

- Tree-level process, cross-section proportional to λ_t^2
- Complementary approaches, needed disentangle possible BSM effects
- New Physics could induce deviations from the SM predictions: compositeness, vector-like quarks, SUSY, etc.
- Different higher dimension operators would affect differently ggF and $t\bar{t}H$

Searching for $t\bar{t}H$ production

• Combination of $t\bar{t}+H$ decays \rightarrow Complex final states, with many objects: jets, *b*-jets, light leptons (ℓ), hadronic taus (τ_{had}), photons

- *t*t*H* cross-section: 0.5 pb
- Large irreducible backgrounds:
 - *tt̄b̄*: 𝔅(15) pb
 - *t̄tW*, *t̄tZ*: 𝔅(1.5) pb

This talk:

tau/anti-tau 3% 6% 2 gluons

W+W

tt
 H(bb
 b) ℓ+jets (36 fb⁻¹):
 Phys. Rev. D 97 (2018) 072016

Decays of a 125 GeV Standard-Model Higgs boson charm/anti-charm 2Z W Z+V others () 3%) 2% 0.2% 0.2% 0.6%

*t*τ*H*(*WW*, ττ) multilepton (36 fb⁻¹): Phys. Rev. D 97 (2018) 072003

Next talk: $t\bar{t}H(\gamma\gamma)$

ttH, Hightarrowbb

Phys. Rev. D 97 (2018) 072016

Top Pair Branching Fractions

Decays of a 125 GeV Standard-Model Higgs boson

$t\bar{t}H(b\bar{b})$: Strategy

- Large $H \rightarrow b\bar{b}$ branching ratio (\sim 58%), and leptonic top decays
- Large irreducible background from tt
 + heavy flavour (HF) production

$t\bar{t} + HF$ modelling:

- Nominal MC: NLO Powheg+Pythia8, modelling studied with 7/8/13 TeV data
- Split in number of HF jets at particle level: $t\bar{t}+\geq 1b$, $t\bar{t}+\geq 1c$, $t\bar{t}+$ light

- tt+≥1b: relative sub-components reweighted to ttbb Sherpa+OpenLoops: NLO, 4-flavour scheme (massive b-quarks, g → bb from ME)
- $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ normalizations floating
- Background modeling systematics:
 - NLO generator: Sherpa5F vs. nominal
 - Parton shower: Powheg+Herwig7/Pythia8
 - $t\bar{t}+\geq 1b$: Sherpa4F vs. nominal

Event selection

b-tagging:

- 4 working points: loose (85% eff.), medium, tight, very-tight (60% eff.)
- Rejection factor for *c*-jets [light jets]: $3 \rightarrow 35$ [$30 \rightarrow 1500$]
- *b*-tagging discriminant built as:

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

Event classification:

- 2ℓ opposite-sign (OS) channel: \geq 3 jets and \geq 2 medium b-tagged jets
 - 1ℓ channel:

- High-*p*_T category:
 - 'Boosted' Higgs and top candidates (large-*R* reclustered jets), plus a *loose b*-tagged jet
 - Higgs candidate ($p_T > 200 \text{ GeV}$): two *loose b*-tagged jets
 - Top candidate ($p_{\rm T} > 250~{\rm GeV}$): loose b-tagged + \geq 1 non-b-tagged jets
- $\circ~$ If failing the 'boosted' selection \rightarrow 'Resolved' event:
 - ≥5 jets and ≥2 very-tight b-tagged jets or ≥3 medium b-tagged jets

Signal/Control regions

- Events in the 1*l* resolved category and 2*l* channel are classified in SR/CR varying the requirements on the *b*-tagging discriminant
- Nine Signal Regions
 - *t*t*H* signal purity: 1.6%-5.4%
- Ten Control Regions defined for tt+b, tt+≥1c and tt+light loosening the b-tagging requirements

MVA analysis: Multi-stage BDT

- 'Classification BDT' to separate signal from background
- Input variables:
 - Discrete *b*-tagging discriminant
 - General kinematic variables
 - 'Reconstruction BDT' (combining jets to reconstruct $t\bar{t}H(b\bar{b})$ system): output score, variables associated to its H/top candidates
 - Likelihood and Matrix Element Method discriminators (only in some resolved SRs)

Fit Model

- Simultaneous profile likelihood fit to all SRs and CRs
 - SRs binned in 'classification BDT'
 - CRs: single bin, except $t\bar{t}+\geq 1c \ 1\ell$ -CRs (binned in $H_{\rm T}=\sum_{\rm iet} p_{\rm T}^{\rm jet}$)
- Normalization factors for tt+≥1b/≥1c constrained in the fit, with no prior uncertainty:
 - $t\bar{t} + \geq 1b$: 1.24 ± 0.10
 - $t\bar{t}+\geq 1c$: 1.63 \pm 0.23

Results

- Analysis dominated by systematics, mainly $t\bar{t}+\geq 1b$ background modelling (46% impact on signal strength $\mu = \sigma/\sigma_{SM}$)
- Constraints for nuisance parameters (NPs) associated to larger variations than observed in data
- Significance: 1.4σ (exp: 1.6σ)
- Signal strength: $\mu_{t\bar{t}H} = 0.84^{+0.64}_{-0.61}$

t**T**H multilepton

Phys. Rev. D 97 (2018) 072003

Top Pair Branching Fractions

Decays of a 125 GeV Standard-Model Higgs boson

ttH multilepton: Strategy

- Targeting $H \rightarrow WW^*, \tau\tau, ZZ^*$ decay modes, combined with leptonic $t\bar{t}$ decays
- Main background: tt → Rely on signature with same-sign (SS) or three leptons + b-tagged jets
- Orthogonal SRs varying the number of light leptons (ℓ) and hadronic taus ($au_{\sf had}$)

- ℓ -only channels more sensitive to $H \rightarrow WW^*$ decays
- au_{had} channels more sensitive to $H \rightarrow au au$

tTH multilepton: Strategy

- Signal to background ratio ranging from few % to >40% (4 ℓ , 3 ℓ +1 τ)
- Very different background contributions:
 - $\circ~$ Fake/non-prompt light and $\tau_{\rm had}$ leptons
 - Irreducible backgrounds: $t\bar{t}W$, $t\bar{t}Z$, other rare SM processes

- Sensitivity enhanced with BDTs
- 2ℓSS0τ: combination of two BDTs
 - ∘ tīH vs. tī
 - $t\bar{t}H$ vs. $t\bar{t}W/Z$
- 3ℓ0τ: 5-dimensional multinominal BDTs (tt
 H, tt
 W, tt
 Z, tt
 , VV) → 5 categories

Background estimation

Main background sources:

- Processes with all prompt ℓ/ au_{had} (mainly $t\bar{t}W/Z) \rightarrow$ Estimated with MC
- Estimated with data-driven techniques:
 - $\circ~$ Events with fake/non-prompt light leptons:
 - Mainly from semileptonic b-hadron decays, also from photon conversions
 - Events with fake tau leptons:
 - Mainly from light flavour jets and electrons mis-identified as $\tau_{\rm had}$

Background: $t\bar{t}W/Z$

- Estimated using NLO MC samples, with theory/modelling uncertainties
- Validated in several regions, such as $3\ell \ t\bar{t}W/Z$ CRs

• Free-floating $t\bar{t}W/Z$ normalization: 15% loss of sensitivity for $t\bar{t}H$, $t\bar{t}W/Z$ consistent with SM predictions

Background: Fake/non-prompt light leptons

$2\ell SS/3\ell$ channels:

- Fully data-driven estimate with a loose-to-tight matrix method
- Real/fake efficiencies measured in $t\bar{t}$ data: $e^{\pm}\mu^{\mp}$ (real), $e^{\pm}\mu^{\pm}+\mu^{\pm}\mu^{\pm}$ (fakes)
- Validated in various regions, such as low jet multiplicity

Fit setup

- Simultaneous fit to the 12 signal and control regions
- BDT shape used as discriminant in 5 of the SRs

Ximo Poveda (CERN)

Results

Uncertainty Source	Δμ			ΔΤΙΔ		√c_12 ToV 26.1 fb ⁻¹		
$t\bar{t}H$ modelling (cross section)	+0.20	-0.09		AILAO		15=10	164, 30.1	10
Jet energy scale and resolution	+0.18	-0.15		- Tot	Stat	Tot	(Stat	Svet)
Non-prompt light-lepton estimates	+0.15	-0.13	0/00 1-	101.		17+2	(0.00.00.00, 0.00	+1.4
Jet flavour tagging and τ_{had} identification	+0.11	-0.09	2005 + 17had			1.7 _1	.9 (-1.5,	-1.1
$t\bar{t}W$ modelling	+0.10	-0.09	$1\ell + 2\tau_{had}$		4	-0.6	.5 (0.8 ,	$^{+1.1}_{-1.3}$)
$t\bar{t}Z$ modelling	+0.08	-0.07	4ℓ		•	-0.5 ⁺¹	.3 (^{+1.3} .9 (^{-0.8} ,	^{+0.2} -0.3)
Other background modelling	+0.08	-0.07	$3\ell + 1\tau_{had}$	E.	• •	1.6 1	·8 (+1.7 3 (-1.3)	$^{+0.6}_{-0.2}$)
Luminosity	+0.08	-0.06	2/SS + 17			3.5 ⁺¹	.7 (+1.5	+0.9
$t\bar{t}H$ modelling (acceptance)	+0.08	-0.04	2000 i Mhad			· · · · · -1	.3 \-1.2 '	-0.5/+0.6
Fake τ_{had} estimates	+0.07	-0.07	3ℓ			1.0 _0	7 (-0.6,	-0.5)
Other experimental uncertainties	+0.05	-0.04	2ℓSS		≬●H	1.5 _{_0}	(-0.4, -0.4)	-0.4)
Simulation statistics	+0.04	-0.04	combined		I O H	1.6 ⁺⁰	$^{+0.3}_{-0.3}$,	$^{+0.4}_{-0.3}$)
Charge misassignment	+0.01	-0.01		-2 0	2 4	6	8 10	12
Total systematic uncertainty	+0.39	-0.30			Be	est-fit µ	for m _H =12	25 GeV

- Most relevant uncertainties on the signal strength:
 - Signal modelling (dominated by scale uncertainties)
 - Jet energy scale and resolution
 - \circ Non-prompt ℓ estimation (with large contribution from limited CR statistics)
- Significance w.r.t background-only hypothesis: 4.1σ (exp: 2.8 σ)
- Signal strength: $\mu(t\bar{t}H) = 1.6 \pm 0.3(stat.)^{+0.4}_{-0.3}(syst.)$
- Most of the channels still dominated by statistical uncertainties

Summary

- Measuring $t\bar{t}H$ is the best way to probe the top-quark Yukawa coupling
- Extensive program of Run-2 $t\bar{t}H$ searches, now turning into measurements

tt *t H(bb̄)*:

- $^{\circ}\,$ Large signal yields but also very large and challenging $t\bar{t}b\bar{b}$ background
- Sensitivity limited by systematics
- $t\bar{t}H$ multilepton $(H \rightarrow WW^*, \tau\tau)$:
 - Good compromise between signal and background levels
 - Comparable impact of systematics and statistics for the most sensitive channels (2ℓ SS0 τ , 3ℓ SS0 τ), other channels are limited by statistics

 tt
 t t H(γγ) (and more): next talk by Haichen