

Associated t/tt production at CMS

Nick Amin for the CMS collaboration

> TopAtLPC2019 May 16, 2019

- Rare top-quark associated processes sensitive to rich set of physics
- Test SM theory and probe new physics from possible deviations
 - EFT, FCNC, 2HDM, SUSY, ...
- While these are *signals* here, they are important *backgrounds* to **many** physics analyses
- Here, I will summarize the latest CMS results for the selected processes below

Single top

- Measure tW cross-section in e[±]µ[∓] + jets channel
 - Large background from tt
- Three categories
 - 1 jet (1 b-tagged) ← signal enriched
 - 2 jets (1 b-tagged)
- Separate event-level BDTs trained to distinguish tW vs tt in 1j1b and 2j1b
 - jet p⊤s
 - ⊿R(e/μ,jet)
 - vec. sum of e/μ+jets+missing energy

35.9 fb⁻¹ (13 TeV Events / 20 GeV Events CMS Perform max likelihood fit to BDT e[±]μ[∓] + 2j2b Data
 Data
 30 CMS Data tW (μ = 0.88) tW (μ = 0.88) Non-W/Z Non-W/Z e[±]μ[∓] + 2i1b shapes in first 2 categories and VV+tīV Prefit DY Postfi uncertainty uncertainty VV+ttV subleading jet p_T in 3rd category Prefit Data/MC XXX Postfit uncertainty Prefit uncertainty Prefit Data/MC Leading experimental uncertainties in fit Lepton ID, JES, pileup 20 140 160 180 Subleading jet p₊ (GeV) Measure $\sigma(tW) = 63.1 \pm 6.6 \text{pb}, \mu(tW) = 0.88$ 2j1b BDT output bin Postfit ×10³ 35.9 fb⁻¹ (13 TeV) Events CMS tW ($\mu = 0.88$) Data • tW process used by more recent Non-W/Z tŧ e[±]µ[∓] + 1j1b VV+ttV DY analysis PAS TOP-17-020 (sub. to XXX Postfit Prefit Lever g Leeeeeee - Berger More in talks EPJC) to constrain 6 EFT parameters on Fri. 2016 dataset / 35.9fb⁻¹ WY mm فففقفقو Neural network signal discrimination b Secondary and a Leeegee . Berosof $\mathscr{L}_{\rm eff} = \mathscr{L}_{\rm SM} + \frac{1}{\Lambda^2} \sum_{i} c_i \mathcal{O}_i +$ لالالالا g Leene b $\langle O_{\phi q}^{(3)}, O_{tW}$ $O^{(3)}_{hq}, O_{tW}$ مقفقو ففقفقق 1 BBBB CR Leve g Or لالالالو O_{uG/c} $\sigma_{\rm exp}(tW) = 63.1 \pm 1.8 \text{ (stat)} =$ u/c MM کوبور d/s $\sigma_{\text{theory}}(tW) = 71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF) pb}$

tZn

- σ (tZq) sensitive to
 - SM couplings: WWZ, tbW, ttZ
 - BSM-enhanced FCNC
- Measure cross-section in trilepton (eµ) + jets channel, requiring one SFOS pair consistent with mz
 - Main backgrounds from fake leptons, WZ, tt̄Z
 - BDT-based lepton ID with data-driven fake lepton estimation from sideband
 - Rest from simulation
- Split events into three categories
 - 2/3 jets (1 b-tagged) / SR23j1b ← signal enriched
 - ≥4 jets (1 b-tagged) / SR4j1b ← bkg. enriched (tīZ)
 - ≥2 b-tagged jets / SR2b ← bkg. enriched (tīZ)

tZq

 $\sigma_{\exp}(pp \to tZq \to tqll) = 111 \pm 13 \text{ (stat)} \stackrel{+11}{_{-9}} \text{ (syst) fb} \qquad \left\{ \begin{array}{l} m_{ll} > 30 \text{ GeV} \\ \sigma_{\text{theory}}(pp \to tZq \to tqll) = 94.2 \pm 3.1 \text{ fb} \end{array} \right.$

- σ(tγq) sensitive to anomalous magnetic,
 electric dipole moments
- Select 1μ , 1γ , ≥ 2 jets (1 b tagged)
 - Isolated photon: $\Delta R(\mu/\text{jet},\gamma) > 0.5$
 - Over half of remaining background from tī+γ
- True γ prediction from simulation
- Fake γ from data-driven sideband method
- Fit event-level BDT (η of forward jet, ...) to data
- Dominant syst. JES (12%)
- \rightarrow 4.4 σ obs. (3.0 σ exp.)

 $\sigma_{\exp}(pp \rightarrow t\gamma q) \cdot B(W \rightarrow \mu\nu) = 115 \pm 17 \text{ (stat)} \pm 30 \text{ (syst) fb}$

$$\sigma_{\text{theory}}(\text{pp} \to t\gamma q) \cdot B(W \to \mu\nu) = 81 \pm 4 \text{ fb}$$

Top pairs

ttW, ttZ

Simultaneous measurement of $\sigma(t\bar{t}W)$ and $\sigma(t\bar{t}Z)$ with 2016 data

- ttw → same-sign dilepton channel
- Multivariate discriminant in bins of jet multiplicity, lepton charge
- ttZ → 3 and 4 lepton categories
- Further bin in jet multiplicity

- Leading backgrounds
 - Nonprompt/charge misid. → datadriven estimate from sideband
 - WZ → normalization ~ 1 in dedicated CR
- ttw (2L SS)
 - BDT (D) trained on event kinematics
 - D < 0 used as nonpromptenriched CR
 - Then split at D = 0.6 in SRs
 - 20 bins (D x charge x N_j x N_b)
- tīZ
 - 3L: 9 bins (N_j x N_b)
 - 4L: 2 bins (N_j=2, N_b=0, \geq 1)
- Leading systematics
 - Lepton ID
 - Nonprompt estimation
 - B-tag, trigger

tŦW, tŦZ

Updated ttZ

- Closely follows previous 2016 analysis (3 and 4 lepton categories, binned in N_j, N_b)
- Improvements
 - BDT-based lepton ID
 - ▶ up to 15% higher lepton efficiency
 - Reduced lepton ID systematic
 - Deep neural network b-tagging algorithm
 - More inclusive trigger selection
- Measured cross-section nearly identical to previous value (14% precision → 8.5%)

Updated ttZ

More in talks

on Fri.

- Inclusive cross-section measurement precision better than NLO predictions
- With double the data, also perform a differential measurement in
 - p_T(Z)
 - $\cos(\theta^* z)$ angle between Z and ℓ^- in Z rest frame (sensitive to polarization)
- Constrain anomalous t-Z couplings (2 vector/axial, 2 dipole parameters)
- Constrain 4 EFT operators associated with t-Z/ γ deviations

 W^+

 W^+

00000

g Jacoboo Jacoboo

- Measure with lepton+jets channel (≥3 jets, ≥1 b jet) + photon with two leading backgrounds
 - $t\bar{t}$ +fake γ
 - W/Z+real γ
- $\sigma(t\bar{t}\gamma)$ extracted after performing two sequential fits
 - "top purity" from distribution M₃ = invariant mass of 3-jet system with maximum vector p_T sum
 - "photon purity" from photon isolation distribution

- Combined likelihood fit containing top and photon purities with expected and observed yields
- Electron and muon channels considered separately in the fit
- Cross-section reported with semileptonic branching ratio

Category	R	$\sigma_{t\bar{t}+\gamma}^{fid}$ (fb)	$\sigma_{\mathrm{t}\bar{\mathrm{t}}+\gamma}\mathcal{B}$ (fb)
e+jets	$(5.7 \pm 1.8) \times 10^{-4}$	138 ± 45	582 ± 187
μ +jets	$(4.7 \pm 1.3) imes 10^{-4}$	115 ± 32	453 ± 124
Combination	$(5.2 \pm 1.1) \times 10^{-4}$	127 ± 27	515 ± 108
Theory	—		$592 \pm 71 \text{ (scales)} \pm 30 \text{ (PDFs)}$

Source	Uncertainty (%)
Statistical likelihood fit	15.5
Top quark mass	7.9
JES	6.9
Fact. and renorm. scale	6.7
ME/PS matching threshold	3.9
Photon energy scale	2.4
JER	2.3
Multijet estimate	2.0
Electron misid. rate	1.3
Z+jets scale factor	0.8
Pileup	0.6
Background normalization	0.6
Top quark $p_{\rm T}$ reweighting	0.4
b tagging scale factor	0.3
Muon efficiency	0.3
Electron efficiency	0.1
PDFs	0.1
Muon energy scale	0.1
Electron energy scale	0.1
Total	20.7

 $\sigma_{\rm exp}({\rm pp} \to t\bar{t}\gamma) \cdot B = 515 \pm 108 \text{ fb}$

 $\sigma_{\text{theory}}(\text{pp} \rightarrow t\bar{t}\gamma) \cdot B = 592 \pm 77 \text{ fb}$

- Four top quark final state sensitive to higgs properties, 2HDM, EFT, strong SUSY, ...
- SM theory $-\sigma(pp \rightarrow t\bar{t}t\bar{t}) = 12fb \pm 20\% @ NLO (1711.02116)$
- Two complementary search channels

- Main background is tt but tt+X nonnegligible
- Strategy
 - In bins of jet, b jet multiplicity and e/μ, use two BDTs and fit to data
 - 1. Identify triplets of jets from hadronic top decay via kinematic handles
 - Event-level discriminator for tttt (includes output of 1.)

Results

- Also combined with 2016 multilepton channel
- 1.4 σ obs. (1.1 σ exp) $\rightarrow \sigma_{t\bar{t}t\bar{t}} = 13^{+11} 9$ fb
- Constrained EFT operators

Channel	Best-fit μ	Best-fit $\sigma_{t\bar{t}t\bar{t}}$ (fb)	Exp. significance s.d.	Obs. significance s.d.	
Single lepton	$1.6^{+4.6}_{-1.6}$	15^{+42}_{-15}	0.21	0.36	
Dilepton	$0.0^{+2.7}$	0^{+25}	0.36	0.0	
Combined (this analysis)	0.0+2.2	0^{+20}	0.40	0.0	
Multilepton	$1.8^{+1.5}_{-1.2}$	17^{+14}_{-11}	1.0	1.6	
Combined (this analysis + multilantan)	$1.4^{+1.2}_{-1.0}$	13^{+11}_{-9}	1.1	1.4	
(uus analysis + muthepton)		* assuming SM $\sigma_{\text{tttt}} = 9.2$ fb			

$$\sigma_{\tilde{t}\tilde{t}\tilde{t}\tilde{t}} = \sigma_{\tilde{t}\tilde{t}\tilde{t}\tilde{t}}^{\rm SM} + \frac{1}{\Lambda^2} \vec{\boldsymbol{C}}^T \cdot \vec{\boldsymbol{\sigma}}^{(1)} + \frac{1}{\Lambda^4} \vec{\boldsymbol{C}}^T \boldsymbol{\sigma}^{(2)} \vec{\boldsymbol{C}},$$

$\mathcal{O}^1_{\mu} = (\bar{t}_R \gamma^{\mu} t_R) (\bar{t}_R \gamma_{\mu} t_R)$	Operator	Expected C_k/Λ^2 (TeV $^{-2}$)	Observed (TeV $^{-2}$)
$(\mathcal{O}_{tt}^{1} - (\bar{\mathcal{O}}_{t} \sim^{\mu} \mathcal{O}_{t}))(\bar{\mathcal{O}}_{t} \sim^{\mu} \mathcal{O}_{t})$	\mathcal{O}_{tt}^1	[-1.5, 1.3]	[-2.1, 2.0]
$\mathcal{O}_{QQ} = (\mathcal{Q}_L \mathcal{F} \mathcal{Q}_L) (\mathcal{Q}_L \mathcal{F}_{\mu} \mathcal{Q}_L),$	\mathcal{O}_{QQ}^1	[-1.5, 1.3]	[-2.2, 2.0]
$\mathcal{O}_{Qt}^{-} = (\mathcal{Q}_L \gamma^r \mathcal{Q}_L) (t_R \gamma_\mu t_R) ,$	\mathcal{O}_{Qt}^1	[-2.4, 2.4]	[-3.5, 3.5]
$\mathcal{O}_{Qt}^{8} = \left(\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L}\right)\left(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R}\right),$	\mathcal{O}_{Qt}^{8}	[-5.6, 4.3]	[-7.9, 6.6]

$\underbrace{\text{I37fb-1}}_{\text{PAS TOP-18-003}} \text{ $\overline{\text{ttt}} - 2SS$, $\geq 3 \text{ leptons} $UCSB$}$

- Based on 35.9fb⁻¹ result (Eur. Phys. J. C 78 (2018) 140)
 - 1.6σ obs. (1σ exp)
- Main backgrounds are ttw, ttz, ttH, non-prompt leptons
 - Data-driven/sideband estimation of non-prompt contribution
 - tt+W/Z normalized to data in high stat. regions
- Strategy BDT analysis and cut-based cross-check
 - Main handles are jet, b jet, lepton multiplicity
 - Baseline requirements of SS lepton pair, ≥2 jets, ≥2 b jets — retains ~20 tttt events
 - Train single event-level BDT for signal discrimination
 - Binned fit for cut-based and BDT analyses
- Leading syst. uncertainty from ttX+bb modeling
- Results
 - With full Run 2 BDT analysis:
 - 2.6 σ obs. (2.7 σ exp) → $\sigma_{t\bar{t}t\bar{t}}$ =13⁺⁶-5fb
 - Approaching 3σ evidence!

- Interpretations
 - Translate into constraint on top Yukawa coupling $|y_t/y_t^{SM}| < 1.7$
 - Measurement of $\sigma(t\bar{t}t\bar{t})$ dependent on $t\bar{t}H$ background
 - σ(ttH)~|yt/ytSM|²
 σ(ttH)
 - Also exclude heavy (m>2m_t) scalar (pseudoscalar) bosons up to ~500 (550) GeV in type-II 2HDM (preferring H→tt̄ at low tanβ)

- Associated production processes sensitive to rich set of physics
- Analyses beginning to challenge and surpass NLO calculation precision
- And there is still much room to improve
 - 2016 \rightarrow full Run2 dataset almost **4x luminosity**

	int. lumi. (fb ⁻¹)	σ theory	σ experiment	
tW		71.7 ± 3.8 pb	63.1 ± 7.0 pb	
tγq	36	81 ± 4.0 fb	115 ± 34 fb	$\sigma(pp \rightarrow t\gamma q)B(t \rightarrow \mu vb)$
tīW		0.61 ± 0.08 pb	0.77 ± 0.17 pb	
tZq	. 70	94.2 ± 3.1 fb	111 ± 16 fb	σ(pp→tZq)B(Z→ℓℓ)
tīZ	10	0.84 ± 0.10 pb	1.00 ± 0.09 pb	
tītī	137	12+ ^{2.2} -2.5 fb	12.6+ ^{5.8} -5.2 fb	

13 TeV summary table

Backup

tW

most discriminating BDT variables

tW

inputs to fit

Events / 0.1 units

ğ Data /

> 20 40 60 80 100 120

35.9 fb⁻¹ (13 TeV)

 \times

(≥3, ≥0)

(2, 2)

 $\stackrel{250}{M_{e^{\pm}\mu^{\mp}}} \stackrel{300}{(GeV)}$

kinematics (baseline dilep.)

140 160 180 200 Dilepton p_{_} (GeV)

50

100

150

200

tW

Source Uncertainty						
Experimental		Sc	ource		Un	certainty (%)
Trigger efficiencies	2.7	Background normalization				
Electron efficiencies	3.2		tī			2.8
Muon efficiencies	3.1		VV			0.4
JES	3.2		Drell–Yan			1.1
Jet energy resolution	1.8		Non-W/Z	leptons		1.6
b tagging efficiency	1.4		tīV	1		0.1
Mistag rate	0.2	М	C finito com	pla cizo		16
Pileup	3.3	101	MC linite sample size			1.0
Modeling		Fı	ıll phase spa	ice extrapolation	on	2.9
tt μ_R and μ_F scales	2.5	Total systematic			10.1	
tW $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.9	(e	(excluding integrated luminosity)		osity)	10.1
Underlying event	0.4	In	tegrated lun	ninositv		3.3
Matrix element/PS matching	1.8	CL	otictical	5		7 0
Initial-state radiation	0.8	St	atistical			2.8
Final-state radiation	0.8	Tc	Total			11.1
Color reconnection	2.0					
B fragmentation	1.9					
Semileptonic B decay	1.5		Р	Prefit _	I	Postfit _
PDFs	1.5	Region	tW	tt	tW	tt
DR-DS	1.3	1j1b	6147 ± 442	30622 ± 1862	5440 ± 604	4 30592 ± 582
		2j1b	3125 ± 294	48484 ± 1984	2888 ± 32	1 $4/436 \pm 612$

2j2b

 725 ± 85

 25052 ± 2411

 719 ± 88

 25114 ± 281

Uncertainty	Impact (%)				
Experimental					
lepton selection	3.2				
trigger efficiency	1.4				
jet energy scale	3.3				
b-tagging efficiency	1.7				
nonprompt normalization	4.1				
ttZ normalization	1.0				
luminosity	1.7				
pileup	1.9				
other	1.3				
Theoretical					
final-state radiation	2.0				
tZq QCD scale	2.0				
$t\bar{t}ZQCD$ scale	1.4				

Source	2–3 jets, 1 b-tagged	\geq 4 jets, 1 b-tagged	\geq 2 b jets
	SR-2/3j-1b	SR-4j-1b	SR-2b
Exp. background	357 ± 34	278 ± 32	228 ± 25
Exp. tZq	103 ± 5.1	38 ± 5.3	37 ± 1.8
Total exp.	460 ± 37	316 ± 35	265 ± 25
Observed	475	310	278

leading BDT inputs

tZq

inputs to fit

UCSB

most discriminating BDT variables

tγq

Process	Event yield
$t\bar{t}+\gamma$	1401 ± 131
$W\gamma$ +jets	329 ± 78
$Z\gamma$ +jets	232 ± 55
Misidentified photon	374 ± 74
t γ (s- and tW-channel)	57 ± 8
$VV\gamma$	8 ± 3
Total background	2401 ± 178
Expected signal	154 ± 24
Total SM prediction	2555 ± 180
Data	2535

have Gaussian constraints, while rate uncertainties have log-normal forms. The main systematic uncertainties in the signal cross section arise from the JES, signal modeling, normalization of $Z\gamma$ +jets, and b tagging and mistagging rates, and amount to 12, 9, 8, and 7%, respectively.

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2} \left[c \bar{t}_L \sigma_{\mu\nu} t_R + c^* \bar{t}_R \sigma_{\mu\nu} t_L \right] F^{\mu\nu},$$

$$|c| = \sqrt{\left(a_t \frac{Q_t e}{2m_t} \right)^2 + d_t^2},$$
anomalous magnetic anomalous electric dipole moment

tγq

SM predicts
$$\begin{cases} d_t < 10^{-30}e \text{ cm} \\ Q_t \cdot a_t \approx 0.02 \end{cases}$$

tŦW/tŦZ

ttW, ttZ

UCSB

ttW (SSDL)

		N_{j}	$N_{\rm b}$	Background	tĪW	tīZ	Total	Observed
		2	>0	18.1 ± 1.8	2.2 ± 0.4	0.5 ± 0.1	20.8 ± 1.9	17
		2	1	8.3 ± 0.9	2.1 ± 0.4	0.5 ± 0.1	10.9 ± 0.9	9
	0 < D < 0.6	5	>1	10.9 ± 1.1	3.5 ± 0.6	0.8 ± 0.1	15.2 ± 1.3	17
		> 2	1	10.1 ± 1.1	2.8 ± 0.5	0.7 ± 0.2	13.7 ± 1.3	8
$\ell^-\ell^-$		>5	>1	22.2 ± 2.0	7.6 ± 1.2	2.7 ± 0.4	32.5 ± 2.4	27
		2	>0	6.8 ± 0.9	2.0 ± 0.3	0.4 ± 0.1	9.2 ± 0.9	10
		2	1	4.1 ± 0.6	1.6 ± 0.3	0.3 ± 0.1	6.1 ± 0.6	11
	D > 0.6	3	>1	7.8 ± 0.9	3.8 ± 0.6	0.7 ± 0.1	12.3 ± 1.1	10
		> 2	1	5.6 ± 0.7	2.9 ± 0.5	0.7 ± 0.2	9.2 ± 0.9	5
		>5	>1	15.3 ± 1.5	12.0 ± 1.9	3.2 ± 0.5	30.5 ± 2.5	32
		2	>0	17.9 ± 1.8	4.9 ± 0.8	0.3 ± 0.1	23.1 ± 2.0	26
		2	1	10.2 ± 1.3	3.7 ± 0.6	0.4 ± 0.1	14.4 ± 1.4	11
	0 < D < 0.6	5	>1	10.2 ± 1.2	6.9 ± 1.1	0.8 ± 0.2	17.9 ± 1.6	18
		> 2	1	10.7 ± 1.2	4.9 ± 0.8	0.8 ± 0.2	16.4 ± 1.4	16
$\ell^+\ell^+$		/5	>1	22.4 ± 2.0	13.3 ± 2.2	3.0 ± 0.5	38.7 ± 3.0	42
		2	>0	8.0 ± 1.1	4.3 ± 0.7	0.4 ± 0.1	12.7 ± 1.3	18
		2	1	4.8 ± 0.7	3.2 ± 0.5	0.3 ± 0.1	8.4 ± 0.9	7
	D > 0.6	5	>1	5.4 ± 0.7	7.1 ± 1.2	1.0 ± 0.2	13.5 ± 1.4	10
		> 2	1	6.3 ± 0.8	5.6 ± 0.9	0.9 ± 0.2	12.8 ± 1.2	12
		>5	>1	16.5 ± 1.5	22.5 ± 3.7	3.1 ± 0.5	42.1 ± 4.0	46

Uncertainty from Impact on the measured Impact on the measured each source (%) ttW cross section (%) $t\bar{t}Z$ cross section (%) Source Integrated luminosity 2.5 4 3 Jet energy scale and resolution 2–5 3 3 Trigger 2 - 44-5 5 1–5 2–5 B tagging 4–5 PU modeling 1 1 1 Lepton ID efficiency 2–7 3 6–7 Choice in $\mu_{\rm R}$ and $\mu_{\rm F}$ 1 $<\!\!1$ 1 1 PDF $<\!\!1$ 1 30 4 <2 Nonprompt background WZ cross section 10-20 <1 2 ZZ cross section 20 1 ____ Charge misidentification 20 3 ____ 50 2 2 Rare SM background 3 $t(\bar{t})X$ background 10-15 4 5-50 2 Stat. unc. in nonprompt background 4 Stat. unc. in rare SM backgrounds 1 <1 20-100 12 Total systematic uncertainty 14

tīZ (3 leptons)

$N_{\rm b}$	N_{j}	Background	t ī W	tĪZ	Total	Observed
	2	1032.8 ± 77.1	0.9 ± 0.1	18.2 ± 3.2	1051.9 ± 77.2	1022
0	3	293.5 ± 21.4	0.4 ± 0.1	22.3 ± 3.9	316.3 ± 21.8	318
	>3	95.4 ± 7.4	0.3 ± 0.1	26.1 ± 4.6	121.8 ± 8.7	144
	2	164.6 ± 17.8	1.9 ± 0.3	24.3 ± 4.3	190.7 ± 18.3	209
1	3	66.6 ± 6.7	0.9 ± 0.2	41.2 ± 7.2	108.7 ± 9.8	99
	>3	32.8 ± 3.3	0.8 ± 0.1	61.3 ± 10.8	94.9 ± 11.3	72
	2	12.9 ± 2.4	1.0 ± 0.2	5.9 ± 1.0	19.8 ± 2.6	32
>1	3	11.6 ± 1.7	0.6 ± 0.1	17.9 ± 3.2	30.1 ± 3.6	46
	>3	10.6 ± 1.6	0.4 ± 0.1	41.0 ± 7.2	52.0 ± 7.4	54

ttZ (4 leptons)

Process	$N_{\rm b}=0$	$N_{\rm b} > 0$
Total background	12.8 ± 2.0	3.3 ± 0.3
tĪZ	4.5 ± 0.6	14.5 ± 1.8
Total	17.2 ± 2.0	17.8 ± 1.8
Observed	23	15

Channel	Expected significance	Observed significance
SS dilepton $\ell^- \ell^-$ (t $\bar{t}W^-$)	2.4	2.3
SS dilepton $\ell^+\ell^+(t\bar{t}W^+)$	4.2	5.5
SS dilepton $\ell^{\pm}\ell^{\pm}$ (t $\bar{t}W^{\pm}$)	4.5	5.3
Three-lepton $(t\bar{t}Z)$	>5.0	>5.0
Four-lepton (ttZ)	4.7	4.5
Three- and four-lepton combined $(t\bar{t}Z)$	>5.0	>5.0

Systematics

tŦW, tŦZ

Impact on the $t\bar{t}Z$

cross section (%)

2

1

2

4

2

1

1

2

1

1

< 1

1

3

1

1

3

1

< 1

2

< 1

< 1

7

Source Uncertainty Correlated range (%) in 2016 and 2017 Integrated luminosity 2.5 Х PU modeling 1–2 \checkmark 2 Trigger \times ttZ kinematics Lepton ID efficiency 4.5-6 Jet energy scale 1–9 0–1 Jet energy resolution CMS Preliminary 77.5 fb⁻¹ (13 TeV) B tagging light flavor 0-4 Х Events + Data tīZ t(ī)X wz B tagging heavy flavor 1-4 × ZZ Rare Nonprompt Xγ Choice in $\mu_{\rm R}$ and $\mu_{\rm F}$ 40 1–4 PDF choice 1–2 Color reconnection 1.5 200 1-8 Parton shower 10-20 WZ cross section WZ + heavy flavor 8 ZZ cross section 10 ata/pred 1.5 $t(\bar{t})X bg.$ 10 - 150.5 Svst+Stat $X\gamma$ background 20 N Nonprompt background 30 CMS Preliminary 77.5 fb⁻¹ (13 TeV) Rare SM background 50 ttZ t(t)X + Data wż Stat. unc. in nonprompt bg. 5-50 Eve Xγ ZZ Rare Nonprompt \times 200 Stat. unc. in rare SM bg. 5-100 Х Total uncertainty

Process	(µ)µµµ	(µ)µµ е	(µ∕e)µ ee	(e)eee	Total
tīZ	152 ± 8	129 ± 7	118 ± 6	82 ± 4	481 ± 24
tīH	4.0 ± 0.5	3.5 ± 0.4	3.2 ± 0.4	2.1 ± 0.3	12.7 ± 1.5
t(īt)X	33.3 ± 4.1	27.4 ± 3.4	$23.\pm2.9$	17.9 ± 2.2	102 ± 12
WZ	17.1 ± 4.6	14.7 ± 4.1	10.0 ± 2.8	10.9 ± 3.0	52.8 ± 14.2
$X\gamma$	1.6 ± 1.6	2.1 ± 2.5	0.6 ± 0.6	4.5 ± 1.6	8.8 ± 3.7
ZZ	2.8 ± 0.4	2.7 ± 0.4	2.6 ± 0.3	2.2 ± 0.3	10.3 ± 1.3
Rare	3.9 ± 2.0	2.9 ± 1.5	2.6 ± 1.3	2.0 ± 1.0	11.3 ± 5.7
Nonprompt	7.3 ± 3.0	11.2 ± 4.2	7.2 ± 3.0	8.9 ± 3.6	34.5 ± 13.1
Total	222 ± 13	194 ± 12	168 ± 9	130 ± 8	713 ± 41
Observed	192	175	152	141	660

Systematics

ttZ

N_{ℓ}	N _i	$N_{\rm b} \mid N_{\rm Z}$	$Z \mid p_T(Z) \text{ (GeV)} \mid$	$-1 \leq \cos(\theta^*)$) < -0.6	$-0.6 \leq \cos(\theta^*)$) < 0.6	$0.6 \leq \cos(\theta^*)$
------------	----------------	----------------------------	------------------------------------	--------------------------	----------	----------------------------	---------	---------------------------

N_ℓ	Nj	N _b	NZ	$p_T(Z)$ (GeV)	$ -1 \leq \cos(\theta^*) < -0.6$	$ -0.6 \le \cos(\theta^*) < 0.6$	$0.6 \le \cos(\theta^*)$		
		0-100	SR1	SR2	SR3				
2	~ 2	1	1	100-200	SR4	SR5	SR6		
3	$ \geq 3$	$ \geq 1$		200-400	SR7	SR8	SR9		
				≥ 400	SR10	SR11	SR12		
				0-100		SR13			
4	$4 \geq 1 \geq$		1	100-200	SR14				
				≥ 200	SR15				
				0-100	CR1	CR2	CR3		
2	1	0	1	100-200	CR4	CR5	CR6		
3	$ \geq 1$	0	0		1	200-400	CR7	CR8	CR9
				≥ 400	CR10	CR11	CR12		
				0-100		CR13			
4	≥ 1	$ \geq 0$	0 2	100-200	CR14				
				≥ 200	CR15				

ttZ

electron+jets

Sample	Genuine photon	Misid. electron	Nonprompt photon	Total
$t\bar{t}+\gamma$	312 ± 17	0.2 ± 0.1	8.5 ± 0.9	321 ± 17
tī+jets	—	22 ± 3	215 ± 13	237 ± 14
$W+\gamma$	75 ± 25	—	—	75 ± 25
W+jets	—	—	60 ± 15	60 ± 15
$Z+\gamma$	14 ± 5	1.3 ± 1.1	$0.5^{+0.7}_{-0.5}$	16 ± 5
Z+jets	—	43 ± 28	11 ± 6	54 ± 30
Single t	11 ± 3	2.0 ± 1.3	16 ± 4	29 ± 7
QCD multijet	—	—	31 ± 18	31 ± 18
Total	412 ± 31	69 ± 29	342 ± 28	823 ± 52
Data			_	935

muon+jets

Sample	Genuine photon	Misid. electron	Nonprompt photon	Total
$t\bar{t}+\gamma$	407 ± 23	0.4 ± 0.3	11 ± 1	418 ± 24
tī+jets	_	31 ± 5	291 ± 16	322 ± 17
$W+\gamma$	140 ± 41	—	9.0 ± 6.7	149 ± 45
W+jets	_	—	57 ± 14	57 ± 14
$Z+\gamma$	21 ± 7	—	1.4 ± 0.9	23 ± 7
Z+jets	_	—	9.6 ± 5.8	10 ± 6
Single t	12 ± 3	1.5 ± 1.3	25 ± 13	38 ± 14
QCD multijet	_	—	36 ± 20	36 ± 20
Total	580 ± 48	33 ± 5	440 ± 33	1053 ± 61
Data	—	—	—	1136

Source	Uncertainty (%)
Statistical likelihood fit	15.5
Top quark mass	7.9
JES	6.9
Fact. and renorm. scale	6.7
ME/PS matching threshold	3.9
Photon energy scale	2.4
JER	2.3
Multijet estimate	2.0
Electron misid. rate	1.3
Z+jets scale factor	0.8
Pileup	0.6
Background normalization	0.6
Top quark $p_{\rm T}$ reweighting	0.4
b tagging scale factor	0.3
Muon efficiency	0.3
Electron efficiency	0.1
PDFs	0.1
Muon energy scale	0.1
Electron energy scale	0.1
Total	20.7

ttt

tītī — 1, 2 OS leptons

measurements

Channel	Best-fit μ	Best-fit $\sigma_{t\bar{t}t\bar{t}}$	Exp. significance	Obs. significance	Channel
		(fb)	s.d.	s.d.	_
Single lepton	$1.6^{+4.6}_{-1.6}$	15^{+42}_{-15}	0.21	0.36	Single lepto
Dilepton	$0.0^{+2.7}$	0^{+25}	0.36	0.0	Dilepton
Combined (this analysis)	0.0+2.2	0+20	0.40	0.0	Combined (this analysi
Multilepton [?]	$1.8^{+1.5}_{-1.2}$	17^{+14}_{-11}	1.0	1.6	Multilepton
Combined (this analysis + multilepton)	$1.4^{+1.2}_{-1.0}$	13^{+11}_{-9}	1.1	1.4	Combined (this analysi

Channel	Expected limit $(\times \sigma_{\tilde{t}\tilde{t}\tilde{t}}^{SM})$	Observed limit $(\times \sigma_{t\bar{t}t\bar{t}}^{SM})$	Expected limit (fb)	Observed limit (fb)
Single lepton	$9.4^{+4.4}_{-2.9}$	10.6	86^{+40}_{-26}	97
Dilepton	$7.3^{+4.5}_{-2.5}$	6.9	67^{+41}_{-23}	64
Combined (this analysis)	$5.7^{+2.9}_{-1.8}$	5.2	52^{+26}_{-17}	48
Multilepton [?]	$2.5^{+1.4}_{-0.8}$	4.6	23^{+12}_{-8}	42
Combined (this analysis + multilepton)	$2.2^{+1.1}_{-0.7}$	3.6	20^{+10}_{-6}	33

upper limits

Systematic uncertainty	Normalization	Shape
Luminosity	Х	
Pileup re-weighting	Х	Х
Lepton scale factors	Х	
Jet energy corrections	Х	Х
b-tagging CSVv2	Х	Х
Ren. and fact. scales	Х	Х
PDF	Х	Х
ME-PS matching	Х	
ISR and FSR scales	Х	
Top quark $p_{\rm T}$ re-weighting	Х	Х
Heavy flavor re-weighting	Х	Х

UCSB

tītī — 1, 2 OS leptons

UCSB

 N_ℓ

tttt – 2 SS, \geq 3 leptons UCSB

tīttī

 1.1 ± 0.4

 $0.0 {\pm} 0.0$

 $0.0 {\pm} 0.0$

 $0.05{\pm}0.03$

 $0.08{\pm}0.05$

 $0.15 {\pm} 0.07$

 $0.23 {\pm} 0.12$

 $0.31 {\pm} 0.16$

 0.72 ± 0.28

 $1.2{\pm}0.5$

 $1.9{\pm}0.7$

 $3.0{\pm}1.2$

 $3.7{\pm}1.4$

 4.3 ± 1.6

 $4.2{\pm}1.6$

 4.1 ± 1.5

 $3.4{\pm}1.3$ $1.1{\pm}0.4$ Observed

104

4

19

19

33

36

44

41

46

48

61

62

40

15

16

4 7

3

						(Significa	ance	σ (tītī)	[fb]
					BDT		2.6σ (2.	7 <i>σ</i>)	12.6+5	.8 _{-5.2}
				С	ut-based	3	1.7σ (2.	5 σ)	9.4+6.2	² -5.6
									CRZ SR1	SM background 102±12 4 0+1 0
N_ℓ	$N_{\rm b}$	Njets	Region		SM background	d tītī	Observed	1	SR2	14.2 ± 1.0
		≤ 5	CRW	CRZ	101±10	$0.8{\pm}0.5$	104		SR3	14.2 ± 1.0 255 ± 35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	SR1	CRW	331±19	3.9 ± 2.3	338		SR4	20.0 ± 0.0 34 ± 4	
	7	SR2	SR1	25.6±2.1	2.0±1.2	33		SP5	2714	
		≥ 8	SR3	SR2	9.1±1.3	1.1 ± 0.6	9		SK3 CD4	57 ± 4 40 ± 4
	5	SR4	SR3	2.0 ± 0.6	0.7 ± 0.4	3		SK0	40±4	
2	3	6	SK5	SK4	11.3 ± 1.3	1.6 ± 0.9	14		SK/	40±4
		~ ~ ~	SK0 SP7	SK3	5.0 ± 0.8	1.7 ± 0.9 1.2 ± 0.7	0		SK8	47±4
	> 4	≥ 0 > 5	SR8	SR0 SR7	2.3 ± 0.4 0.71±0.20	1.2 ± 0.7	0		SR9	59±5
	<u> </u>	5	SR9	SR8	33+09	22+13	5		SR10	52±4
	2	6	SR10	SR9	6 8±0.9	0.7 ± 0.4	6		SR11	43.0±3.5
	-	> 7	SR11	SR10	2.10 ± 0.31	0.35 ± 0.22	3		SR12	32.1±3.0
\geq 3		4	SR12	SR11	1.4 ± 0.7	0.23 ± 0.14	1		SR13	16.7±1.6
	≥ 3	5	SR13	SR12	2.0±0.5	0.59 ± 0.34	2		SR14	10.1±1.2
		≥ 6	SR14	SR13	1.09 ± 0.28	$0.7{\pm}0.4$	2		SR15	5.0 ± 0.8
inve	rted Z	-veto	CRZ	SR14	0.87 ± 0.30	$0.8{\pm}0.4$	1		SR16	2.5±0.6
									SR17	$0.6{\pm}0.4$
C		Prolim	inary	Cut-base	d (postfit)	137 fb ⁻¹ ('	13 TeV)		MS Preliminary	, BDT (n

	CMS Preliminary	Cut-based	d (postfit)	137 fb ⁻	¹ (13 TeV)
10 ² -			4% tītī 223 tīW 23% tīZ 16% Nonprompt 10% tīH	5% 4% 3% Iep. 2%	Rare Charge misid. Xy ttVV Data
10 ¹				1	1.1.
10 ⁰ -					
10^{-1}				· ·	
Data/Pred.	CRZ - CRW -	5R3	SR7	SRIO - +	SR12 SR13

		Impact on the
Source	Uncertainty (%)	tīttī cross section (%)
Integrated luminosity	2.3–2.5	3
Pileup	0–5	1
Trigger efficiency	2–7	2
Lepton selection	2–10	2
Jet energy scale	1–15	9
Jet energy resolution	1–10	6
b tagging	1–15	6
Size of simulated sample	1–25	<1
Scale and PDF variations †	10-15	2
ISR/FSR (signal) †	5–15	2
ttH (normalization) †	25	5
Rare, $X\gamma$, t $\bar{t}VV$ (norm.) †	11-20	<1
tīZ, tīW (norm.) †	40	3-4
Charge misidentification †	20	<1
Nonprompt leptons †	30–60	3
$N_{\text{jets}}^{\text{ISR/FSR}}$ +	1-30	2
$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ +	35	11

tttt – 2 SS, \geq 3 leptons UCSB

Nb