Measurements of differential $\mathrm{t}\bar{\mathrm{t}}$ cross sections at CMS

O. Hindrichs On behalf of the CMS collaboration

University of Rochester

Top Quark Physics at the Precision Frontier Fermilab

15.05.2019

Overview

Differential $\mathrm{t}\bar{\mathrm{t}}$ cross sections:

- as a function of kinematic event variables (JHEP06 (2018) 002)
- differential measurements at parton and particle level in dilepton (JHEP02 (2019) 149) and *e*/µ+jets (PRD97 (2018) 112003) channels
- multi-differential measurements in dilepton (arXiv:1904.05237 sub. EPJC) and e/μ +jets
- multiplicities and properties of jets in tt events (PRD97 (2018) 112003)
- with boosted reconstruction in all-jets final state (TOP-16-013)

Measurement kinematic event variables in e/μ +jets

36 fb⁻¹, 13 TeV, Sub. to JHEP, arXiv:1801.03991

Measurements of variables that do not need reconstruction of top quarks.

Measurement based on "stable" particles (>30 ns) within experimental acceptance \rightarrow avoid theory extrapolations. Objects use RIVET definitions see CERN-CMS-NOTE-2017-004. plugin available 11662081

• Selection: exactly 1 e/μ , at least 4 jets, at least 2 b-tagged jets.

36 fb⁻¹, 13 TeV, JHEP06 (2018) 002

Systematic uncertainties

Relative uncertainty source (%)	Njets	$H_{\rm T}$
b tagging efficiency	3.2 - 4.1	3.6 - 4.7
Electron efficiency	1.2 - 1.4	1.3 - 1.6
Muon efficiency	1.7 - 1.9	1.6 - 2.2
JER	0.1 - 0.9	0.1 - 1.2
JES	1.8 - 12.6	5.7 - 16.8
QCD bkg cross section	0.1 - 0.5	0.1 - 0.7
QCD bkg shape	< 0.1	0.1 - 1.0
Single top quark cross section	1.1 - 1.7	1.1 - 3.5
V+jets cross section	0.7 - 1.1	0.6 - 3.4
PDF	0.2 - 1.0	0.1 - 0.8
Color reconnection (Gluon move)	0.1 - 2.9	0.1 - 4.1
Color reconnection (QCD-based)	0.1 - 2.3	0.1 - 4.4
Color reconnection (Early resonance decays)	0.3 - 3.9	0.1 - 7.1
Fragmentation	0.1 - 2.8	0.6 - 3.1
h _{damp}	0.8 - 4.9	0.3 - 4.1
Top quark mass	0.7 - 2.8	0.4 - 4.9
Peterson fragmentation model	0.3 - 3.9	1.6 - 3.9
Shower scales	3.1 - 8.0	3.6 - 8.3
B hadron decay semileptonic branching fraction	0.2 - 0.9	0.2 - 1.2
Top quark p _T	0.8 - 1.6	0.1 - 1.4
Underlying event tune	0.8 - 3.9	0.3 - 7.0
Simulated sample size	0.1 - 1.6	0.1 - 1.6
Additional interactions	0.1 - 0.4	0.1 - 0.8
Integrated luminosity	2.5 - 2.5	2.5 - 2.5
Total	10.8 - 16.5	11.2 - 19.4

Modeling uncertainties represent baseline for all recent CMS top quark measurements.

 Shower scales have large impact on predictions. They also contribute as a dominant uncertainty in the measurement.

$36 \, {\rm fb}^{-1}$, 13 TeV, JHEP06 (2018) 002

- POWHEG+HERWIG++ and POWHEG/MG5(MLM)+PYTHIA8 predict higher jet multiplicity
- *H*_T and *S*_T (*p*_T sum of all objects) are softer than predicted by most MCs.

$36 \, {\rm fb}^{-1}$, 13 TeV, JHEP06 (2018) 002

Lepton related variables

- $e/\mu p_{\rm T}$ softer and η less central.
- also observed for $p_{\rm T}^{\rm miss}$.

 χ^2 -tests considering theory uncertainties (POWHEG+PYTHIA8) show compatibility between measurements and expectations.

Differential $t\bar{t}$ cross sections

e/μ +jets

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

- Selection: exactly 1 e/µ, at least 4 jets, at least 2 b-tagged.
- Based on lepton and p_T^{miss} use mass constraints of m_t, m_W on leptonic side to obtain p_z-component of neutrino momentum, and correct b-jet.
- Calculate likelihood λ according to 2D mass distributions of reconstructed m_t-m_W on hadronic side and compatibility of b-jet on leptonic side.

dilepton

36 fb⁻¹, 13 TeV, JHEP02 (2019) 149

- Selection: ee, eμ, μμ at least 2 jets, at least 1 b-tagged.
- $\bullet~$ In same flavor channels exclude Z-Peak and require $p_{\rm T}^{\rm miss} > 40~\text{GeV}$
- – Neutrino momenta calculated using m_t , m_W based on leptons and p_T^{miss} testing all permutation of jets (b jets preferred). Solution with lowest $M(t\bar{t})$ selected.

– Object momenta smeared according to resolution. 100 smeared events summed weighted according to expected $M(\ell\ell bb)$.

Measurements at particle level

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

Define proxy of top quark based on measurable objects (leptons, jets) in experimental acceptance:

- \rightarrow clean definition of "top quark" observable.
- \rightarrow avoid theoretical extrapolations.

Definition of particle-level top quarks (CERN-CMS-NOTE-2017-004) Events with exactly 1 electron/muon, 2 b jets, in total at least 4 jets Sum momenta of all neutrinos p_N and find the permutation of jets that minimizes:

$$K^{2} = (M(p_{N} + p_{\ell} + p_{b_{1}}) - m_{t})^{2} + (M(p_{j_{1}} + p_{j_{2}}) - m_{W})^{2} + (M(p_{j_{1}} + p_{j_{2}} + p_{b_{2}}) - m_{t})^{2}$$

Analysis uses ${\rm R}{\scriptstyle\rm IVET}$ for particle level level definitions. plugin available 11663958.

Otto Hindrichs (UR)

top cross sections

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003, JHEP02 (2019) 149

Parton level

• Softer $p_{\rm T}(t)$ compared to POWHEG/MG5(FxFx)+PYTHIA8 and SHERPA.

• Better $p_{\rm T}(t)$ agreement with NNLO QCD + NLO EW [JHEP10 (2017) 186] calculation

Otto Hindrichs (UR)

- e/µ+jets and dilepton channels show similar deviations from predictions
- Softer $M(t\bar{t})$ compared to POWHEG/MG5(FxFx)+PYTHIA8 and SHERPA.
- POWHEG+HERWIG++ too soft at particle level, while better at parton level.
- In general: χ²-tests (see backup) considering theory uncertainties (POWHEG+PYTHIA8 and SHERPA) show reasonable compatibility between measurements and SM predictions.

Normalized and absolute cross sections for all distributions available.

EFT interpretations

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003, JHEP02 (2019) 149

Chromomagnetic dipole moment

- anomalous CMDM introduced by EFT operator (O_{Gt}) introducing a ggtt vertex
- experimentally mostly visible in angle between leptons.

Global EFT interpretations (JHEP04 (2019) 100)

 high M(tt) makes important contribution to the combined EFT interpretations of all top quark production related measurements at the LHC

Double-Differential $\mathrm{t}\bar{\mathrm{t}}$ cross sections measurements

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

Results unfolded in 2 dim. →correction for migrations among all bins. CMSSimulator @µ:+jets.parton level (13 TeV)

*p*_T(t) softer in all rapidity regions.

35.8 fb⁻¹ (13 TeV)

36 fb⁻¹, 13 TeV,PRD97 (2018) 112003

 $p_{\rm T}(t)$ in bins of jet multiplicity ($p_{\rm T}({\rm jet}) > 30 \,{\rm GeV}$)

2 dim. unfolding in $p_{\rm T}(t)$ and number of additional jets.

- The slope disappears for events with higher jet multiplicity.
- HERWIG++ does not follow the trend.

 $y(t\bar{t})$ in different $M(t\bar{t})$ regions

- Here at particle level, but all distributions not including additional jets also available at parton level.
- Some tendency to overestimate the cross section at higher $M(t\bar{t})$ and $|y(t\bar{t})|$

Multi-Differential $t\bar{t}$ cross sections in the dilepton channel

 $36\,\mathrm{fb}^{-1},\,13\,\mathrm{TeV},\,\mathrm{arXiv}{:}1904.05237\,\,\mathrm{sub}.$ EPJC

- Uses same reconstruction as single differential measurement in dilepton channel.
- Results show similar behavior as in e/µ+jets.

Interpretations of multi-Differential $t\bar{t}$ cross sections

 $36\,\mathrm{fb}^{-1},\,13\,\mathrm{TeV},\,\mathrm{arXiv}{:}1904.05237\,\,\mathrm{sub}.$ EPJC

- M(t\bar{t}) vs y(t\bar{t}) in bins of jet multiplicity is sensitive to $m_{\rm t}^{\rm pole}$ and $\alpha_{\rm s}$
- The kinematics of the tt
 system (not of the individual top quarks) are reconstructed without using mt to avoid a reconstruction bias:
 p_z(νν̄) = p_z(ℓ⁺ℓ⁻)

36 fb⁻¹, 13 TeV, arXiv:1904.05237 sub. EPJC

- *m*^{pole}_t and α_s are extracted from comparisons with fixed order NLO cross section.
- taking into account scale and PDF uncertainties in the theoretical prediction.

tt+jets Production

36 fb⁻¹, 13 TeV,PRD97 (2018) 112003

Jet properties

- Measurement of kinematic properties of jets in tt system (b₁, b_h, j_{W1}, j_{W2}) and up to four additional jets (j₁ ... j₄) ordered by p_T.
- Correct for effects of resolution and mis-identification of jets.

- POWHEG+PYTHIA8: describes data, but > 1 jet from parton shower.
- MG5+PYTHIA8 [FxFx] (tt
 + up to 2 jets NLO):
 similar to
 POWHEG+PYTHIA8.
- SHERPA (tt + 0,1 jet NLO, up to 4 jets LO): some deviation description of add. jets.
- POWHEG+HERWIG++: jets in tt system too soft (related to soft p_T at particle level).

Otto Hindrichs (UR)

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

- SHERPA and POWHEG+HERWIG++ show both differences.
- Jet multiplicities for various $p_{\rm T}$ thresholds show reasonable agreement.

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

Minimum separation between a jet and the jets in $\mathrm{t}\bar{\mathrm{t}}$ system

- Sensitive to final state PS.
- Jets of tt decay closer due to higher top p_T in Simulation.
- POWHEG+HERWIG++ predicts too many jets close to tt jets. →reduced momentum of particle level top quark.

 $\chi^2\text{-tests}$ with full set of th. uncertainties for jet related distributions:

- POWHEG+PYTHIA8: relies on PS tuning shows reasonable agreement
- SHERPA: with default tune and LO at high jet multiplicities shows larger deviations.

In all-jets final state including boosted reconstruction

2.5 fb⁻¹, 13 TeV, CMS-TOP-16-013

Resolved

- Selection: at least 6 jets, 2 b tagged.
- Perform kinematic fit for $t\bar{t}$ reconstruction (based on W and top mass constrains)
- Accept events with $150 < m_{
 m t}^{
 m fit} < 200\,{
 m GeV}$, and fit probability greater than 0.02.

Boosted

- 1 jet $p_{\mathrm{T}} > 200\,\mathrm{GeV}$ and 1 jet $p_{\mathrm{T}} > 450\,\mathrm{GeV}$
- $\bullet~$ each jet: softdrop mass $>50\,{\rm GeV},$ b tagged subjet, n-jettiness requirements.

Template Fit: Signal template from MC, background template from data by inverting b tagging.

 $\sigma_{
m tar t} = 834 \pm 25(\textit{stat})^{+118}_{-104}(\textit{syst}) \pm 23(\textit{lumi})\,
m pb$

Otto Hindrichs (UR)

top cross sections

2.5 fb⁻¹, 13 TeV, CMS-TOP-16-013,

Soft $p_{\rm T}(t)$ confirmed in all-jets channel and persisting in boosted regime.

Conclusion

Otto Hindrichs (UR)

top cross sections

15.05.2019 25 / 25

Backup

Parton level						
Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
	POWHEG	+P8 with unc.	POWHEG+P8		NNLO QCD+NLO EV	
$p_{\rm T}(t_{\rm high})$	16.4/12	0.173	27.4/12	< 0.01		
$p_{\rm T}(t_{\rm low})$	22.4/12	0.033	42.7/12	< 0.01		
$p_{\rm T}(t_{\rm h})$	16.4/12	0.175	24.0/12	0.020	5.13/12	0.953
$ y(\mathbf{t}_{\mathbf{h}}) $	1.28/11	1.000	1.41/11	1.000	2.27/11	0.997
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	22.2/12	0.035	38.3/12	< 0.01	9.56/12	0.654
$ y(t_\ell) $	2.04/11	0.998	2.42/11	0.996	8.14/11	0.700
$M(t\bar{t})$	7.67/10	0.661	11.6/10	0.314	24.7/10	< 0.01
$p_{\rm T}(t\bar{t})$	5.38/8	0.717	46.5/8	< 0.01		
$ y(t\bar{t}) $	3.98/10	0.948	5.66/10	0.843	9.26/10	0.507
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	23.6/44	0.995	41.6/44	0.577		
$M(t\bar{t}) vs. y(t\bar{t}) $	20.6/35	0.975	35.0/35	0.469		
$p_{\rm T}({\rm t_h})$ vs. $M({ m t\bar{t}})$	38.9/32	0.188	59.3/32	< 0.01		
	POWHEG+H++ MG5_aMC@NLO+P8 FxFx		c@nlo+P8 FxFx		_	
$p_{\rm T}(t_{\rm high})$	6.60/12	0.883	16.3/12	0.180		
$p_{\rm T}(t_{\rm low})$	28.5/12	< 0.01	15.3/12	0.225		
$p_{\rm T}(t_{\rm h})$	5.09/12	0.955	11.0/12	0.530		
$ y(\mathbf{t}_{\mathbf{h}}) $	2.39/11	0.997	2.21/11	0.998		
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	6.55/12	0.886	17.4/12	0.136		
$ y(t_{\ell}) $	2.54/11	0.995	3.99/11	0.970		
$M(t\bar{t})$	4.16/10	0.940	12.1/10	0.275		
$p_{\rm T}(t\bar{t})$	55.0/8	< 0.01	26.8/8	< 0.01		
$ y(t\bar{t}) $	11.9/10	0.292	8.92/10	0.540		
$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	57.9/44	0.077	40.2/44	0.634		
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	40.8/35	0.229	58.7/35	< 0.01		
$p_{\rm T}(t_{\rm h})$ vs. $M(t\bar{t})$	93.0/32	< 0.01	166/32	< 0.01		

Farticle level							
Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	
	POWHEG+P8 with unc.		SHERPA with unc.		powheg+P8		
$p_{\rm T}(t_{\rm h})$	15.9/12	0.197	7.21/12	0.844	29.5/12	< 0.01	
$ y(\mathbf{t}_{\mathbf{h}}) $	1.96/11	0.999	1.48/11	1.000	2.23/11	0.997	
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	27.0/12	< 0.01	22.3/12	0.034	80.2/12	< 0.01	
$ y(t_\ell) $	4.55/11	0.951	5.07/11	0.928	4.99/11	0.932	
$M(t\bar{t})$	5.83/10	0.829	2.40/10	0.992	9.07/10	0.525	
$p_{\mathrm{T}}(\mathrm{t}\mathrm{ar{t}})$	4.96/8	0.761	28.9/8	< 0.01	41.2/8	< 0.01	
$ y(t\bar{t}) $	5.93/10	0.821	6.63/10	0.760	8.61/10	0.570	
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	35.7/44	0.810	29.6/44	0.953	64.1/44	0.025	
$M(t\bar{t}) vs. y(t\bar{t}) $	25.9/35	0.867	24.2/35	0.914	56.2/35	0.013	
$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	47.4/32	0.039	57.2/32	< 0.01	73.2/32	< 0.01	
	SHERPA		POWHEG+H++		MG5_aMC@NLO+P8 FxFx		
$p_{\rm T}({ m t_h})$	13.5/12	0.335	32.1/12	< 0.01	17.4/12	0.137	
$ y(\mathbf{t}_{\mathbf{h}}) $	2.32/11	0.997	4.89/11	0.936	3.16/11	0.988	
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	39.4/12	< 0.01	21.8/12	0.040	47.7/12	< 0.01	
$ y(t_\ell) $	5.54/11	0.902	4.04/11	0.969	7.22/11	0.781	
$M(t\bar{t})$	2.86/10	0.985	52.8/10	< 0.01	5.45/10	0.859	
$p_{\rm T}(t\bar{t})$	68.7/8	< 0.01	46.8/8	< 0.01	21.3/8	< 0.01	
$ y(t\bar{t}) $	12.1/10	0.276	18.6/10	0.046	8.13/10	0.616	
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	48.3/44	0.305	116/44	< 0.01	44.9/44	0.434	
$M(t\bar{t}) vs. y(t\bar{t}) $	41.5/35	0.208	219/35	< 0.01	55.7/35	0.014	
$p_{\rm T}({\rm t_h})$ vs. $M({ m t\bar t})$	66.5/32	< 0.01	152/32	< 0.01	48.9/32	0.028	

Particle level

Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
	POWHEG+P8 with unc.		SHERPA with unc.		powheg+P8	
Additional jets	1.52/6	0.958	27.3/6	< 0.01	10.1/6	0.121
Additional jets vs. $p_{\rm T}(t_{\rm h})$	35.1/44	0.830	64.6/44	0.023	71.6/44	< 0.01
Additional jets vs. $M(t\bar{t})$	27.5/36	0.845	68.9/36	< 0.01	38.8/36	0.345
Additional jets vs. $p_{\rm T}(t\bar{t})$	64.6/29	< 0.01	181/29	< 0.01	175/29	< 0.01
$p_{\rm T}({\rm jet})$	70.2/47	0.016	374/47	< 0.01	133/47	< 0.01
$ \eta(\text{jet}) $	120/70	< 0.01	174/70	< 0.01	171/70	< 0.01
$\Delta R_{\rm jt}$	60.9/66	0.655	215/66	< 0.01	168/66	< 0.01
$\Delta R_{\rm t}$	64.0/62	0.405	229/62	< 0.01	121/62	< 0.01
	SHERPA		POWHEG+H++		MG5_aMC@NLO+P8 FxFx	
Additional jets	63.0/6	< 0.01	34.1/6	< 0.01	11.1/6	0.086
Additional jets vs. $p_{\rm T}(t_{\rm h})$	88.5/44	< 0.01	230/44	< 0.01	53.4/44	0.156
Additional jets vs. $M(t\bar{t})$	112/36	< 0.01	300/36	< 0.01	55.1/36	0.022
Additional jets vs. $p_{\rm T}(t\bar{t})$	285/29	< 0.01	223/29	< 0.01	122/29	< 0.01
$p_{\rm T}({\rm jet})$	768/47	< 0.01	624/47	< 0.01	111/47	< 0.01
$ \eta(\text{jet}) $	214/70	< 0.01	259/70	< 0.01	133/70	< 0.01
ΔR_{it}	334/66	< 0.01	959/66	< 0.01	67.0/66	0.441
ΔR_{t}	316/62	< 0.01	483/62	< 0.01	78.9/62	0.073

With additional jets