Top Quark Physics at the Precision Frontier Fermilab LPC, May 16, 2019 Extracting the top Yukawa coupling from differential $\sigma_{t\bar{t}}$ in CMS

Introduction and motivation

Weak corrections

- -2% effect on total cross section
- Enhanced for large values of g_t
- Sensitive variables: $M_{t\bar{t}}$ and $\Delta y_{t\bar{t}} = y_t y_{t\bar{t}}$
- tt reconstruction
 - 3 jets: novel technique
 - 4 jets
- Extraction of strength of Yukawa coupling
 - Conclusions

Aran Garcia-Bellido On behalf of the CMS Collaboration

Top quark Yukawa coupling

- Fermion mass terms generated by Higgs mechanism
 - Yukawa coupling between Higgs field (φ) and left-handed fermion doublets (L) and right-handed fermion singlets (R)

$$\mathcal{L}_{\text{Yukawa}} = -\mathbf{g} \left[\mathbf{\bar{L}} \phi \mathbf{R} + \mathbf{\bar{R}} (\phi^{\mathbf{T}})^* \mathbf{L} \right] = -\mathbf{g} \frac{\mathbf{v}}{\sqrt{2}} \mathbf{q} \mathbf{\bar{q}} = -\mathbf{m}_{\mathbf{q}} \mathbf{q} \mathbf{\bar{q}}$$

For top quark: $g_t = \sqrt{2}m_t/v \approx 1$

- Any deviation could be a sign of new physics
- Can measure g_t directly in tt production

- Depends on H coupling to other particles in decay
- Except for 4-top final state
- A. Garcia-Bellido (Rochester)

g_t from tt cross section in CMS

Weak corrections to tt production

Another way to measure g_t independently of other H couplings is through weak corrections in tt production

P. Uwer et al. [arXiv: 1305.5773, PRD 91, 014020 (Feb 2015)]

3

► Hathor 2.1 is used to calculate the contribution to the LO $\alpha_w \sigma_{tt}$

■ Apply as 2D scale factors to POWHEG → templates in $Y_t = g_t/g_t^{SM}$

35.8 fb⁻¹ *l*+jets selection

- - 1 isolated e or μ , p_{τ} >30 GeV, $|\eta|$ <2.4 \geq 5 jets
 - \geq 3 jets with p_T>30 GeV, $|\eta|$ <2.4
 - \geq 2 b-tagged ($\varepsilon_{b} \approx 65\%$; $\varepsilon_{aa} \approx 3\%$)
- Background modeling:

 N^{SR}

,CR

QCDMC

- Single top: POWHEG (t-ch), Madgraph5 (tW)
- W+jets and Drell Yan+jets: POWHEG
- QCD multijets: shape from data sideband defined by CSV<0.6
 - QCD normalization by transfer factor from data: $N_{QCD}^{SR} = N_{resDATA}^{CR}$

tt reconstruction in ≥ 4 jet events $(p_{\nu} + p_{\ell})^2 = m_{\rm W}^2$

- Need to find correct jet assignment to tops
- First, we need to determine p
 - Use mass constraints on the leptonic side
 - Each equation describes an ellipsoid in momentum space
 - Choose p, as the point with 2 minimum distance D₀ to MET

Nucl. Instrum. Meth. A 736, 169 (2014)

Next need to assign correct jets to t_{had}

Calculate probability from 2D distributions of $m_{_{+}}$, $m_{_W}$ on hadronic side

 $(p_{\nu} + p_{\ell} + p_{b_{\ell}})^2 = m_t^2$

p_v solution *

MET

 p_v true

50- 100 150 200

p (GeV)

(²⁰⁰ (²⁰⁰) (²⁰⁰) (²⁰⁰)

Q100

50

0

-50

-100

-150

p_y (GeV)

200

150

100

50

-50

-100

-150

200

p (GeV)

tt reconstruction in ≥ 4 jet events

Finally, build final discriminant combining the m_{Whad}, m_{thad} probability and D_{v min} probability

$$-\ln(\lambda_4) = -\ln\left(P_{\mathrm{m}}(m_{\mathrm{W}_{\mathrm{h}}}, m_{\mathrm{t}_{\mathrm{h}}})\right) - \ln\left(P_{\nu}(D_{\nu,\mathrm{min}})\right)$$

Select permutation with lowest $-ln(\lambda)$

A. Garcia-Bellido (Rochester)

g_t from tt cross section in CMS

tt reconstruction in 3 jet events

- At the threshold of tt production, quarks from $t\bar{t}$ decay are likely to have p_{τ} or η outside our acceptance
 - In 93% of 3 jet events one of the soft jets from W is lost
- Now use the hadronic top mass and the leptonic D_{v.min}

 $-\ln(\lambda_3) = -\ln(P_{\mathsf{m}_{\mathsf{t}_{\mathsf{h}}}}) - \ln(P_{\nu}(D_{\nu,\mathsf{min}}))$

This method correctly identifies 80% of assignments

g_t from tt cross section in CMS

> 3 jet and 4 jet events have a similar resolution in $M_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$

8

Control plots: 3 jets

Control plots: 4 jets

A. Garcia-Bellido (Rochester)

g, from tt cross section in CMS

Control plots: ≥ 5 jets

11

Extracting the Yukawa coupling Likelihood fit in 55 ($M_{t\bar{t}}$, $\Delta y_{t\bar{t}}$) bins, after the fit:

Templates of strength of weak correction/uncorrected yields at detector level vs Y_t

A. Garcia-Bellido (Rochester)

g_t from tt cross section in CMS

m_# [GeV/c²]

Systematic uncertainties

- Jet energy corrections are the dominant source
- ▶ QCD shape uncertainty derived by b-tagging inversion → larger uncertainties for 3 jets channel
- Δm_t from ±1GeV MC samples
- Top p_T modeling: compare to NNLO distributions
- ► Uncertainty due to weak correction estimated by (scale variation)x(weak correction) → tiny systematic, low impact

Uncertainty	tī	single t	V+jets	QCD
Luminosity	2.5%	2.5%	2.5%	2.5%
Pileup	shape	shape	-	-
Lepton ID/trigger	shape	shape	shape	-
JEC (19 independent variations)	shape	shape	-	-
JER	shape	-	.	-
b tagging scale factor	shape	shape	shape	-
b-mistag scale factor	shape	shape	shape	-
Background normalization		15%	30%	30%
CSV inversion on QCD template	-	-	-	shape
Factorization & renormalization scale	shape	shape	shape	-
PDF	shape	shape	121	-
$\alpha_s(M_Z)$ in PDFs	shape	shape	-	-
Top quark mass	shape	-	177	-
Top quark $p_{\rm T}$ modeling	shape	-	-	-
Parton Shower				
-NLO shower matching	shape	-	-	-
-ISR	2%/2%/3%	-	æ	-
-FSR	shape	shape	-	-
-Color reconnection	shape	-	-	-
-b-jet fragmentation	shape	shape	-	-
-B hadron branching fraction	shape	shape	-	-
Weak correction $\delta_{OCD}\delta_{EW}$	shape	-	-	-

 g_t from tt cross section in CMS

Results

- Combined 95% CL limits:
 - Expected $Y_t < 1.62$
 - Observed $Y_t < 1.67$
- Our analysis is systematics limited

PAS TOP-17-004

Channel	Expected 95% CL	Observed 95% CL
3 jets	$Y_{\rm t} < 2.17$	$Y_{\rm t} < 2.59$
4 jets	$Y_{\rm t} < 1.88$	$Y_{\rm t} < 1.77$
5 jets	$Y_{\rm t} < 2.03$	$Y_{\rm t} < 2.23$
Combined	$Y_{t} < 1.62$	$Y_{\rm t} < 1.67$

- Result from ttH → ttt with 35.8 fb⁻¹: Y_t < 2.1 @ 95%CL CMS-TOP-17-009: EPJC 78 (2018) 140
- ▶ Result from ttH → ttt with 137 fb⁻¹: Y_t < 1.7 @ 95%CL PAS TOP-18-003

A. Garcia-Bellido (Rochester)

g_t from tt cross section in CMS

35.8 fb⁻¹ (13 TeV)

Conclusions

b Use HATHOR 2.1 to derive weights $\delta \sigma_{weak}$ /LO as a function of M_{tt}, Δy_{tt}, g_t

 $\frac{\delta \sigma_{\rm EW}^{13{\rm TeV}}}{\sigma_{\rm LO}} = (-2.63 + 0.0029g_Y + 0.63g_Y^2)\%, \quad \text{PRD 91 (2015) 014020}$

- Obtain modified tt POWHEG templates
- Follow reconstruction from l+jets differential σ analysis TOP-17-002
- ▶ Introduced novel reconstruction technique for 3 jet events in $t\bar{t} \rightarrow l + jets$
 - 80% efficiency for correct parton/jet assignment in 2 b-tagged sample
 - Resolution in $M_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ similar to 4 jet category
- Define all tt combinations (correct, wrong, etc) as signal, non tt components as backgrounds
- Profile likelihood ratio in bins of $M_{t\bar{t}}$, $\Delta y_{t\bar{t}}$: derive strength of gt

95% CL limits Expected: $g_t < 1.62 g_t^{SM}$; Observed: $g_t < 1.67 g_t^{SM}$

- Comparable in sensitivity to ttH \rightarrow 4t results
 - Complementary measurement
- Now working on dilepton final state and full Run II data

Extras

A. Garcia-Bellido (Rochester)

 g_t from tt cross section in CMS

A. Garcia-Bellido (Rochester)

\boldsymbol{g}_t from tt cross section in CMS