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“the devil is in the tails”
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Top quark pT
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NNLO QCD + NLO EW 
corrections important 
But do not fully explain 
discrepancy 
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Tails of Tops
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Cumulative in Mtt

✓ All at NLO QCD.  
✓ Shown is: cumulative times max luminosity 

✓ For tops: to add EW (and possibly NNLO?) 
✓ Decay: if feasible, may add some NNLO 

corrections 
✓ Assess the advantage of calorimeter upgrade 

(extended lepton tracking/b-tagging)

14TeV

14TeV

27TeV

Slide by Alex Mitov
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Cumulative in PT

✓ For tops: to add EW (and possibly NNLO?) 
✓ Decay: if feasible, may add some NNLO corrections

14TeV
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Slide by Alex Mitov
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FONLL predictions by Matteo Cacciari

FONLL reduces the cross-section 
by 30% in the largest-M(tt) bins

1000 events 1000 events

•1-10% precision for Mtt=5000-6000 GeV •1-10% precision for pTtop=2000-2500 GeV

[M. Zaro, HL/HE LHC workshop, June 2018]
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QCD precision for top tails
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Figure 5. Results for the absolute (left) and normalized (right) top-pair invariant mass distribu-
tion at the LHC with

p
s = 13 TeV as a ratio to the NNLO result evaluated using µf = HT /4. The

uncertainty bands are obtained through scale variations as described at the beginning of section 5
and in eqs. (5.1) and (5.2).

A remarkable feature of figure 4 is that the NNLO+NNLL0 and NNLO results are in

close agreement when µf = HT /4 is chosen. To add context to this result, we compare

in figure 5 the ratio of the NNLO and NNLO+NNLL0 results with µf = Mtt̄/2 to the

NNLO result with µf = HT /4, using the same set of matching scales and method of

estimating perturbative uncertainties as in figure 4. These two figures deliver a couple of

important messages. Firstly, the NNLO+NNLL0 result is rather stable against switching

the factorization scale between HT -based and Mtt̄-based schemes. This implies that the

even higher order corrections to the NNLO+NNLL0 result are not so important. On the

other hand, the NNLO result changes drastically when switching the schemes. In particular,

higher order contributions beyond NNLO encoded in the resummation produce a very large

e↵ect for the choice µf = Mtt̄/2, as already forseen in [31]. Given these observations, the

close compatibility between the NNLO+NNLL0 result (with either scale choice) and the

NNLO result with µf = HT /4 is a highly non-trivial fact. This provides an important

confirmation of the result of [24], which favors the choice µf = HT /4 for the fixed-order

calculation of the Mtt̄ distribution. The overall picture emerging from the above analysis is

that the perturbative description of the top-quark pair invariant mass distribution is under

good control.

Results for the absolute (normalized) average top/anti-top (pT,avt) distribution at

NNLO and NNLO+NNLL0 are shown in the left (right) panel of figure 6. The NNLO

checked that the uncertainties estimated this way di↵er little from those obtained by varying µf and µr

with the 7-point method. The NNLO+NNLL0 calculation varies four resummation scales and also µf = µr

independently and adds the uncertainties in quadrature, so a direct numerical comparison with the 7-point

method is not straightforward. However, we have experimented with a 7-point scan over µf and µh, and

found that the uncertainty estimates change only marginally compared to the quadrature method.

– 28 –

[Czakon et. al., ‘18]NNLO+NNLL′ for top-pair production

•1-10% precision for Mtt=5000-6000 GeV •1-10% precision for pTtop=2000-2500 GeV

•most relevant hard scale is not Mtt itself but rather HT

•remaining scale uncertainties at the level of 5%
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Figure 4. Results for the absolute (left) and normalized (right) top-pair invariant mass distribu-
tion at the LHC with

p
s = 13 TeV. In all cases the ratio is to the NNLO result with µf = HT /4.

The uncertainty bands are obtained through scale variations as described at the beginning of sec-
tion 5 and in eqs. (5.1) and (5.2).

eq. (2.5). All pieces of that equation must be evaluated at a common µf , which is also cho-

sen as µf = HT /4 by default. In addition, we draw on the analysis of the previous section

and use µh = HT /2 and µs = HT /N̄ by default, as well as µdh = mt and µds = mt/N̄ . In

both the NNLO and the NNLO+NNLL0 results, the bands in figure 4 represent perturba-

tive uncertainties estimated through scale variations. For the NNLO calculation, we obtain

the bands by keeping the factorization and renormalization scales equal and varying them

up and down by a factor of two. For the NNLO+NNLL0 calculation, both the factorization

scales and the resummation scales are independently varied in the interval [µi,0/2, 2µi,0],

where i 2 {f, h, s, dh, ds} and the subscript “0” denotes the default value of that scale as

previously specified. To determine the upper and lower uncertainties �O+ and �O� for

the cross section O in a given bin, one first evaluates

�O+
i = max{O(i = 1/2, i = 1, i = 2)} � Ō ,

�O�
i = min{O(i = 1/2, i = 1, i = 2)} � Ō , (5.1)

for each scale i, where i = µi/µi,0 and Ō denotes the value of the cross section as given by

eq. (2.5) in that bin using the default scale choices. For example, O(f = 2) means each

term in eq. (2.5) is evaluated at µf = 2µf,0, with all other scales set to their default value.

The upper (lower) uncertainty bands are then given by Ō +�O+ (Ō � �O�), where

�O± =

sX

i

�
�O±

i

�2
, (5.2)

so that this method amounts to adding the uncertainties from independent scale variations

in quadrature.5

5While we have used correlated µr = µf variations in the NNLO piece of the calculation, we have
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Figure 6. Results for the absolute (left) and normalized (right) pT,avt distributions at the LHC
with

p
s = 13 TeV. In all cases the ratio is to the NNLO result with µf = mT /2. Uncertainty

bands are obtained in complete analogy to those in figure 4.

results (with which resummation is matched) have been calculated using the definition

d�

dpT,avt
=

1

2

✓
d�

dpT,t
+

d�

dpT,t̄

◆
, (5.3)

where pT,t (pT,t̄) denotes the transverse momentum of the top (anti-top) quark, and we

have labeled the distributions in figure 6 accordingly. The pT distribution is calculated

using the scale choice µf = mT /2 (where mT refers to the transverse mass of either the

top or anti-top quark depending on the distribution under consideration), which is favored

by the study [24]. The resummed results use µh = mT and µs = 2mT /N̄ by default, as

justified in the previous section. The bands refer to perturbative uncertainties estimated

through scale variations using the same procedure as for the Mtt̄ distribution above. We

see that the NNLO+NNLL0 result is consistent with the NNLO one. On the other hand,

we show in appendix A that upgrading matching with fixed-order from NLO+NNLL0 to

NNLO+NNLL0 is an important e↵ect for the pT distributions, especially in reducing the

scale uncertainties in the high pT region. This is an important fact to keep in mind when

using NLO-based Monte Carlo event generators to model pT distributions.

Finally, in figure 7 we show results for the total cross section, obtained in several

di↵erent ways. The NNLO and NNLO+NNLL0 results with µf = HT /4 are obtained by

integrating the top-pair invariant mass distribution in figure 4, while those with µf = mT /2

are obtained by integrating the pT distribution in figure 6. In these results with dynam-

ical scales, perturbative uncertainties are estimated through the same procedure of scale

variations used for the distributions, and are displayed as error bars in figure 7. These are

compared to the “standard” results for the total cross section, which are calculated using

fixed scales with µf = µr = mt by default. We obtain them from the Top++ program [74],

which implements both the NNLO results from [28] as well as a soft-gluon resummation

in the absolute threshold production limit �t ! 0 [75]. In these fixed scale results, pertur-

– 29 –

•remaining scale uncertainties in the tail at the level of 5-10%
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EW corrections for top-pair production
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EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,
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EW corrections for top-pair production
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EW corrections: sqrtS dependence
8 TeV vs. 13 TeV 

NLO EW corrections EW corrections in multijet merging Conclusions

NLO EW corrections to tt̄ at 8 and 13TeV
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NLO EW corrections to tt̄ at 8 and 13TeV
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corrections in Sudakov limit
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at 1 TeV:
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• composition of total from gg vs
qq̄ channels changes
! NLO EW correction changes
! e↵ect still small
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EW corrections: sqrtS dependence
8 TeV vs. 13 TeV 

NLO EW corrections EW corrections in multijet merging Conclusions

NLO EW corrections to tt̄ at 8 and 13TeV
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Combination of QCD and EW corrections
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Difference between these two approaches indicates  
size of missing mixed EW-QCD corrections: few percent

Additive combination 

Multiplicative combination 
(try to capture some             
contributions,  e.g. EW 
Sudakov logs × soft QCD) 
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Mixed QCD-EW uncertainties
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Bold estimate: 
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NLO EW to tt+1jets 
and we observe

strong support for 
•factorization 
•multiplicative QCD x EW combination
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Comparison with data
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Figure 11: Absolute (left) and normalized (right) differential cross sections at the parton level as
a function of pT(th) (upper) and pT(t`) (lower). The data are shown as points with light (dark)
bands indicating the statistical (statistical and systematic) uncertainties. The cross sections are
compared to the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++),
the multiparton simulation MG5 aMC@NLO (MG5)+PYTHIA8 FxFx, and the NNLO QCD+NLO
EW calculations. The ratios of the various predictions to the measured cross sections are shown
at the bottom of each panel.
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Comparison with data

➡EW corrections alleviates tension  
  with data
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EW corrections in particle-level event generation

• incorporate approximate electroweak corrections in SHERPA’s  
 NLO QCD multijet merging (MEPS@NLO)  

• modify MC@NLO B-function to include NLO EW virtual corrections  
  and integrated approx. real corrections

NLO EW corrections EW corrections in multijet merging Conclusions

Electroweak corrections in particle-level event generation

• incorporate approximate electroweak corrections in
SHERPA’s NLO QCD multijet merging (MEPS@NLO)

• modify MC@NLO B-function to include NLO EW virtual corrections
and integrated approx. real corrections
!

Bn,QCD+EWvirt(�n) = Bn,QCD(�n) +Vn,EW(�n) + In,EW(�n) + Bn,mix(�n)

��*
exact virtual contribution A

AK

approximate integrated real contribution

?
optionally include subleading Born

• real QED radiation can be recovered through standard tools
(parton shower, YFS resummation)

• simple stand-in for proper QCD+EW matching and merging
! validated at fixed order, found to be reliable,
! di↵. . 5% for observables not driven by real radiation

Marek Schönherr Electroweak and subleading correctionsintt̄ + jets production 14/18
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V+I

For pT-top: approximation reliable at 1%-level

•real QED radiation can be recovered through 
standard tools (parton shower, YFS resummation)

➡ simple stand-in for proper QCD+EW matching  
   and merging (work-in-progress)
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Results: ttbar+jets @ MEPS NLO QCD+EWvirt (0,1jets merged) 
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➡ reproduces well the corrections seen at fixed-order 
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Results: ttbar+jets @ MEPS NLO QCD+EWvirt (0,1jets merged) 

NLO EW corrections EW corrections in multijet merging Conclusions

Results: tt̄ + jets at high pT
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that is considered,
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for the pT (t) distribution, (1)
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for the pT (t) distribution, (2)

µ =
HT

4
=
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mT (t) +mT (t)

�
for all other distributions, (3)

and have been identified in Ref. [21] via the “Principle of Fastest Convergence”. Instead,
in the multi-jet merging approximation, a CKKW scale [22, 23] has been used, with a scale
µcore for the pp ! tt hard process set equal to

µcore =
1

2
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+
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m
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t � û
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which in practice weights the contributions of the di↵erent colour flows involved in the
process [24, 25].

It is very interesting to notice that

for pT (t) ! 1 µcore =)
1
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r
4
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pT ⇠

pT

2
, (5)
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4
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for E(t) ! 0 µcore =)
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mt ⇠

HT

4
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where E(t) is the energy of the top quark. In other words, even though the scale choice in
the two di↵erent calculations have been identified on the basis of very di↵erent principles,
they are very close in the full phase-space: in the boosted regime (5), at high m(tt) (6),⇤ and
at the threshold (7). Morever, (5)-(7) suggest that the observable-dependent scale choices
in (1)-(3) can actually be derived from a single definition at the fully di↵erential level.

3 Results

In Fig. 1 we compare NNLO and MEPS@NLO predictions for pT (t) and pT,avt distributions.
In the first inset we show the scale uncertainties † for the two di↵erent approximations, both
normalised over the central value of the NNLO one. As can be seen, besides the first bin,
for both distributions the uncertainty bands from the two di↵erent predictions overlap.
As expected, the scale uncertainty at NNLO is much smaller than in the MEPS@NLO

predictions. The information about the EW corrections is instead displayed in the second
inset. We show, for both NNLO and MEPS@NLO, the ratio of their predictions with and

⇤At high m(tt), top (anti)quarks are mainly produced in the peripheral region, due to t- and u-channel
diagrams, therefore pT (t)/E(t) ! 0.

†At NNLO we have used 7-point variation, while at MEPS@NLO the 9-point variation. However, the
o↵-diagonal values are within the uncertainty band and thus this di↵erence has no impact.

2

CKKW-scale with:
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Figure 1: Comparison between MEPS@NLO and NNLO predictions for the pT (t) and pT,avt.

without including EW contributions, at their central scales. Moreover, for the NNLO, we
consider also the case in which we have combined QCD and EW approach in the additive
approach, see Ref. [3] for details. These plots further support the multiplicative approach,
since the MEPS@NLO value is much closer to the NNLO in the multiplicative approach
than in the additive one.

Using the same layout, in Fig. 2 we compare NNLO and MEPS@NLO predictions for
pT (t1) and pT (t2) distributions. As can be seen, there are large discrepancies between the
two approximations. The reason is that these two distributions are pathological at fixed
order. Indeed, since pT (t1) > pT (t2), with fixed order calculations a jet-veto on additional
radiation is indirectly applied at small values of pT (t1) and leads to large uncontrolled terms
for pT (t1) . mt. On the contrary, adding shower e↵ects and thus multiple radiations, this
e↵ect is automatically cured in MEPS@NLO. The same argument applies for pT (t2) & mt.
Comparing the impact of the electroweak corrections is therefore not meaningful in these
phase-space regions. Outside these two regions (pT (t1) & mt or pT (t2) . mt), where
fixed-order calculations are reliable, the two calculations are again compatible and NNLO
scale uncertainty is much smaller than at MEPS@NLO. Moreover, as can be seen in Fig. 2,
the impact of electroweak corrections in MEPS@NLO and NNLO (in the multiplicative
approach) is again very similar. We remark that averaging the distributions in the plots on
the left and the right in Fig. 2 the pT,avt distributions of Fig. 1 is obtained, where all these
issues are not present.

In the left plot in Fig. 3 we show the same kind of plot for the m(tt) distribution. As
can be seen, in this case the agreement is far to be perfect, especially in the tail of the
distribution. We have checked that this is not due to the particular procedure that is used
in the NLO merging in MEPS@NLO by comparing the purely QCD predictions with the
one obtained with FxFx [26], which also provides NLO-merged predictions with a di↵erent
procedure. The plot on the right of Fig. 3 shows this comparison. We have also verified that

3

• MEPS@NLO and NNLO agree within  
  uncertainties 

• largely reduced uncertainties at NNLO 
• shape differences 
 

•EW corrections in MEPS NLO QCD+EWvirt 
   agree with NNLO QCDxEW

[Czakon, JML, et. al., ‘18]
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MEPS @ NLO vs. NNLO
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Figure 2: Comparison between MEPS@NLO and NNLO predictions for the pT (t1) and
pT (t2).

setting the scales exactly to the same values in the NNLO and MEPS@NLO approaches
reduces but does not completely eliminate this tension. Further work is therefore necessary
in order to fully understand the origin of this discrepancy between the two approaches.
Both approaches correctly take into account the contributions from one hard real emission
at one-loop and two hard real emissions at tree level; a possible origin of the discrepancy
may be due to the missing two-loop terms in the MEPS@NLO and/or the missing shower
e↵ects in the NNLO.

4 Conclusions and Outlook

In this proceeding we have compared two di↵erent approximations for phenomenological
predictions of top-quark pair production at the LHC: NNLO QCD combined with EW cor-
rections at NLO, and MEPS@NLO multi-jet merging at NLO also including EW corrections.
We have considered di↵erent distributions at 13 TeV: pT (t), pT,avt, pT (t1), pT (t2) and m(tt).
In the case of pT (t) and pT,avt, the two approximations are compatible and, as expected,
NNLO predictions have much smaller scale uncertainties. Thus, this approximation is more
suitable for precision studies on parton-level distributions. On the other hand, fixed-order
calculations can be pathological and indeed this is the case for pT (t1) and pT (t2) distribu-
tions in the regions pT (t1) . mt and pT (t2) & mt, respectively, where the MEPS@NLO is
superior to fixed-order calculations.

We have also shown that the relative e↵ects induced by EW corrections in MEPS@NLO is
much closer to those observed at NNLO with EW corrections combined in the multiplicative
approach than in the case when they are simply added (additive approach).

For the specific case of m(tt) a tension between the two approaches is present, especially

4

➡ for trailing top large uncertainties at fixed-order

[Czakon, JML, et. al., ‘18]
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MEPS @ NLO vs. NNLO

➡ relevant difference between MEPS@NLO and NNLO for Mtt
➡ MEPS@NLO (Sherpa) consistent with FxFx (MadGraph_aMC@NLO)
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Figure 3: Comparison between MEPS@NLO and NNLO predictions (left) and between
purely QCD MEPS@NLO, FxFx and NNLO predictions (right) for the m(tt) distribution.

in the far tail, therefore further work is necessary in order to fully understand its origin.
Additional plots regarding this aspect can be found at the repository:

http://www.precision.hep.phy.cam.ac.uk/results/ttbar-nnloqcd-nloew/

We conclude that an NNLO+PS calculation would be desirable for precise predictions
in the full phase-space and especially for future studies. For this purpose, we remark the
relevance of EW corrections and we have further supported the superiority of the multiplica-
tive approach for their combination with those from QCD origin, especially in the boosted
regime.
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Figure 10: Comparison of full calculation and DPAs for various distributions at a centre-

of-mass energy
√
s = 13TeV at the LHC: (a) transverse momentum for the positron (upper

left), (b) transverse momentum for the harder b jet (upper right), (c) transverse momen-

tum for the µ−e+ system (middle left) (d) transverse momentum for reconstructed top

quark (middle right), (e) invariant mass for the b̄µ− system (lower left), and (f) invariant

mass for the e+µ− system (lower right). In the upper panel the LO distributions for the

WW DPA are shown. The lower panel displays the relative deviation of the different DPAs

from the full calculation, δ = σDPA/σFull − 1, in per cent.
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Figure 7: Transverse-momentum distributions at a centre-of-mass energy
√
s = 13TeV

at the LHC: (a) for the muon (upper left), (b) for missing momentum (upper right), (c)

for the harder b jet (middle left), (d) for the softer b jet (middle right), (e) for the b-jet

pair (lower left), and (f) for the reconstructed top quark (lower right). The lower panel shows

the relative NLO EW correction δ = σNLO EW/σLO − 1 and the relative photon-induced

contributions δ = σγg/σLO in per cent.
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Top-pair : off-shell NLO EW

Technical challenge:  full 2 →6 process, i.e.  pp → bb e+νeμ−νμ   @ NLO EW  (*)
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γ/Z q̄

Figure 3: Representative one-loop Feynman diagrams squared. The diagram on the left-

hand side represents an EW correction to the QCD process. It can also be interpreted as a

QCD correction to the EW amplitude interfered with the QCD amplitude. The right-hand

side shows a QCD correction to the QCD amplitude interfered with the EW amplitude.

Only the top quarks are represented as the inclusion of their decay products does not alter

the discussion.
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Figure 4: Representative octagon and heptagon one-loop Feynman diagrams.

all contributions with resonant top quarks, but in addition also all contributions with one

resonant top quark.

Calculating the NLO corrections to a process with intermediate on-shell particles im-

plies to include the corrections to their production and decay. The on-shell approximation

does not include off-shell effects as well as virtual corrections that link the production

part and the decay parts or different decay parts. Such corrections should be of the order

O(Γi/Mi) [93–95] if the decay products are treated inclusively and the resonant contribu-

tions dominate. Here Γi and Mi are the width and the mass of the resonant particles,

respectively. Off-shell effects of the resonant particles can be taken into account by using

the pole approximation. In this case, the resonant propagators are fully included, while

– 6 –

[Denner, Pellen; ‘16]

pole approximations/full

•  typical Sudakov behaviour 
O(10%) for pT,t = 800 GeV

• non-resonant configurations can berelevant
• well described by WWbb approximation
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Figure 8: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC:

(a) invariant mass of the reconstructed top quark (upper left), (b) invariant mass of the

e+b system (upper right), (c) invariant mass of the reconstructed tt̄ system (lower left),

and (d) invariant mass of the b-jet pair (lower right). The lower panel shows the relative

NLO EW correction δ = σNLO EW/σLO − 1 and the relative photon-induced contributions

δ = σγg/σLO in per cent.

its high-energy tail [44, 47]. The corresponding EW corrections are significant and vary

from 1% at 400GeV to −4% at 1300GeV. The invariant mass of the bb̄ system also

displays typical EW corrections, accounting for a 5% variation over the considered range,

accompanied by a relatively small photon-induced contribution below 2%.

The rapidity distributions of the harder bottom quark and the reconstructed top quark

are shown in Figures 9a and 9b, respectively. The rapidity distributions of the other final

states exhibit flat EW corrections similar to the ones displayed in Figure 9a. Over the whole

rapidity range, the EW corrections are small and do not show any special features, while

the photon-induced contributions are somewhat more important at high rapidities. This is

particularly true for the rapidity distribution of the reconstructed top quark. There, the

– 18 –

• O(2-5%) around top resonance 
• possible relevance for top mass  

measurements

•  LO non-resonant:  
 5% for pT,t = 800 GeV 



�20

Conclusions

• Theory predictions for differential top production very advanced:  
  NNLO QCD x NLO EW 

• EW corrections relevant for pT-tails (and eventually also Mtt) 

• ttbar and ttbar+ j now known at NLO including all one-loop orders:  
 universal corrections observed 

• Inclusion of approximate EW corrections in MEPS@NLO available 

• Improves data description for boosted top quarks already at 8 TeV 

• MEPS@NLO vs. NNLO differences to be understood  

• publically available in Sherpa-2.2.5 & OpenLoops2 
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Scale setting

that is considered,
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and have been identified in Ref. [21] via the “Principle of Fastest Convergence”. Instead,
in the multi-jet merging approximation, a CKKW scale [22, 23] has been used, with a scale
µcore for the pp ! tt hard process set equal to
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which in practice weights the contributions of the di↵erent colour flows involved in the
process [24, 25].

It is very interesting to notice that
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where E(t) is the energy of the top quark. In other words, even though the scale choice in
the two di↵erent calculations have been identified on the basis of very di↵erent principles,
they are very close in the full phase-space: in the boosted regime (5), at high m(tt) (6),⇤ and
at the threshold (7). Morever, (5)-(7) suggest that the observable-dependent scale choices
in (1)-(3) can actually be derived from a single definition at the fully di↵erential level.

3 Results
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