Jonas M. Lindert

 Top Quark Physics at the Precision Frontier Fermilab, 16.05.19

Multi-jet merged top-pair production including EW corrections

Hadronic top

 \cdot 1-10% precision for M_{tt} =5000-6000 GeV •1-10% precision for M_{tt} =5000-6000 GeV •1-10% precision for pT $_{top}$ =2000-2500 GeV⁶¹²

 $\overline{1100}$ T-TUS PIECISION IOI PITOP-ZUUU-ZJU

• $1-10\%$ precision for M_{tt} =5000-6000 GeV • $1-10\%$ precision for pT_{top} =2000-2500 GeV

QCD precision for top tails

• remaining scale uncertainties in the tail at the level of 5-10%

 \bullet most relevant hard scale is not Mtt itself but rather H $_{\rm T}$

A remarkable feature of the figure 4 is that the NNLO+NNLL0 and NNLO+NNLL0 and NNLO+NNLL0 and NNLO+NNLL0 and NNLO
And in N₁ Figure 4. Resultation and normalized (right) and normalized (right) top-pair invariant mass distribution of the mass distribution of the mass distribution of the mass distrib

EW corrections for top-pair production

 $\overline{}$ t_1 ² + $\frac{1}{2}$ | $\frac{1}{$ • NLO₁₂+NLO₀₃: < 1%

EW corrections for top-pair production 1.0

• $NLO EW: ~ -5% at Mtt=2 TeV$ • $LO_{11}+LO_{02}: ~-2-3%$ at Mtt=2 TeV \bullet NLO₁₂+NLO₀₃: \sim 1% at Mtt=2 TeV 0.95 \overline{a} \overline{b} \overline{c} $\overline{$ t_1 ² + $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ $\frac{1}{2}$ | $\frac{1}{2}$ $\frac{1}{2}$ | $\frac{1}{2}$ t∠T**TVL∪U3**. ⁴ T / U

EW corrections: sqrtS dependence 8 TeV vs. 13 TeV

Sherpa+Open

Sherpa+Open $\overline{}$ \cup l NLO EW NLO EW \overline{a} C COLLECTIONS III OL than $q\bar{q}$ channel, 10⁵ **•** gg channel receives smaller EW $\overline{}$ corrections in Sudakov limit at 1 TeV:

Loops

$$
\delta_{\text{EW,sud}}^{q\bar{q}} \approx 1.5\,\delta_{\text{EW,sud}}^{gg}
$$

- $q\bar{q}$ channels changes \mathbf{C} LO *gg* $\overline{1}$ *gg* **•** composition of total from gg vs
	- \rightarrow NLO EW correction changes
	- 1.0 \rightarrow effect still small

Marek Sch¨onherr Electroweak and subleading correctionsin*tt*

Sherpa+Open

PISE GOLOUNE ANN SOLUTION AND CONTROLLED TO A TRYPOR

tt $\mathbf t$, LHC13, NNPDF3.0QED

Mixed QCD-EW uncertainties

Bold estimate:

Consider real $\mathcal{O}(\alpha \alpha_s)$ correction to tt+jet \approx **NLO EW to tt+1 jets** d we obs י
' and we observe

- •factorization
- multiplicative QCD x EW combination

*K*mix = 0*.*1 ⇣ **K**
Ation strong support for

$$
\frac{\mathrm{d}\sigma _{\mathrm{EW}}^{\mathrm{NLO}}}{\mathrm{d}\sigma _{\mathrm{LO}}}\vert _{t\bar{t}+1\mathrm{jet}}-\frac{\mathrm{d}\sigma _{\mathrm{EW}}^{\mathrm{NLO}}}{\mathrm{d}\sigma _{\mathrm{LO}}}\vert _{t\bar{t}}\lesssim 2\%
$$

Comparison with data Comparison with data

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO) $\frac{1}{2}$ interesting the $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$
- modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections \sim **PODIMED DIMICHOFF ROTHCHULL PRED EW VIRTUAL CONTECHN** aled approx. real corrections

 $B_{n, \textrm{QCD+EW}_{\textrm{virt}}}(\Phi_n) = B_{n, \textrm{QCD}}(\Phi_n) + V_{n,\textrm{EW}}(\Phi_n) + I_{n,\textrm{EW}}(\Phi_n) + B_{n,\textrm{mix}}(\Phi_n)$ **A** exact virtual contribution

EW corrections in particle-level event generation

- AK **.** optionally include subleading Born $LO_{11}(+LO_{02})$
- approximate integrated real contribution

\mathbb{R}^N and \mathbb{R}^N **LVV CONCEUTIONS IN PAI LICIE-IEVEI EVE** Sherpa+Open

- EW corrections in particle-level event generation
	- AK **.** optionally include subleading Born $LO_{11}(+LO_{02})$
	- approximate integrated real contribution
		- For pT-top: approximation reliable at 1%-level

- ¯ + jets production 14/18 •real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
	- ➡ simple stand-in for proper QCD+EW matching and merging (work-in-progress)

14

Results: ttbar+jets @ MEPS NLO QCD+EW_{virt} (0, I jets merged)

➡ reproduces well the corrections seen at fixed-order

Results: ttbar+jets @ MEPS NLO QCD+EW_{virt} (0, I jets merged) $\overline{}$ $\overline{}$ \overline{a} 4 *m^T* (*t*) + *m^T* (*t*) for all other distributions*,* (3)

• improved description of data arXiv:1009.1127

$$
\lim_{\text{NLO QCD}}\lim_{\text{QCD+EW}_{\text{virt}}} \left\{\n\begin{array}{c}\n\text{if } \text{R} \\
\text{in } \text{R} \\
\text{NLO QCD} \\
\text{NLO QCD+EW}_{\text{virt}}\n\end{array}\n\right\} \n\longrightarrow\n\text{tr} \cdot \overline{t} + 0, \text{1j@NLO} \\
+ 2, 3, \text{4j@LO} \\
+ \text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{15} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{14} \\
\text{16} \\
\text{17} \\
\text{18} \\
\text{19} \\
\text{10} \\
\text{10} \\
\text{11} \\
\text{12} \\
\text{13} \\
\text{1
$$

additional LU muitipii
. MUNCITL CICLIUWCAN **MENIOPS** K -factor arxiv:1009.1127
1009.1127 - 1009.1127 - 1009.1127 - 1009.1127
1009.1127 - 1009.1127 - 1009.1127 - 1009.1127 - 1009.1127 - 1009.1127 *•* additional LO multiplicities 1 inherit electroweak corrections through MENLOPS differential Höche, Krauss, MS, Siegert $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{$

• improved description of data they are very close in the full phase-space: in the boosted regime (5), at high *m*(*tt*) (6),⇤ and

$$
\begin{array}{ll}\n\text{THEOREM} & \text{CKKW-scale with:} \\
\text{1.33, 032009} & \text{CKKW-scale with:} \\
\text{QCD} & \text{CVD} & \\
\text{EWE} & \text{EVEV} & \\
\text{EVEV} & \text{EVEV} &
$$

MEPS @ NLO vs. NNLO

MEPS @ NLO vs. NNLO

Figure 2: Comparison between Mergen and The *p* and the *p* and *p* (*t* and *p* (*t*) and *p* (➡ for trailing top large uncertainties at fixed-order

[Czakon, JML, et. al., '18]

MEPS @ NLO vs. NNLO

■ relevant difference between MEPS@NLO and NNLO for Mtt ➡ MEPS@NLO (Sherpa) consistent with FxFx (MadGraph_aMC@NLO) \blacksquare MEPS@NILO (Sherna) consistent with ExEx (MadGranh aMC@NILO) purely QCD MEPS@NLO, FxFx and NNLO predictions (right) for the *m*(*tt*) distribution.

- O(2-5%) around top resonance
- \mathbf{V}_{eff} • possible relevance for top mass measurements

• well described by WWbb approximation • 0(2-5%) around top resonance
• non-resonant configurations can berelevant (middle right), (e) for the b-jet of the b-jet (middle right), (measurements were visitation to the reconstructed to the reconstruction of the reconstruction of the right). The reconstruction of the right of the right of the reconstruction of the right of the right of the right of the °atior

\overline{C} \bigcup

- Theory predictions for differential top production very advanced: NNLO QCD x NLO EW
- EW corrections relevant for pT-tails (and eventually also Mtt)
- ttbar and ttbar+ j now known at NLO including all one-loop orders: universal corrections observed
- Inclusion of approximate EW corrections in MEPS@NLO available
- Improves data description for boosted top quarks already at 8 TeV
- MEPS@NLO vs. NNLO differences to be understood
- publically available in Sherpa-2.2.5 & OpenLoops2

Conclusions

Backup

Scale setting *µ* = *H^T* $\overline{6}$

 $\mu =$ $\frac{m}{2}$ $\mu =$ $\frac{m}{2}$ μ = *H^T* 4

In MEPS@NLO CKKW-scale with: $\mu_{\rm core} =$ 1 2 (1) $\frac{1}{\hat{s}}$ + 1 $m_t^2 - \hat{t}$ $\frac{1}{t}$ + 1 $m_t^2 - \hat{u}$ $\sqrt{\frac{1}{2}}$ 2 $p_T^2 - \hat{u}f$

$$
\mu = \frac{m_T(t)}{2} \text{ for the } p_T(t) \text{ distribution,}
$$

\n
$$
\mu = \frac{m_T(\bar{t})}{2} \text{ for the } p_T(\bar{t}) \text{ distribution,}
$$

\n
$$
\mu = \frac{H_T}{4} = \frac{1}{4} (m_T(t) + m_T(\bar{t})) \text{ for all other distributions,}
$$

In MEPS@NLO CKKW-scale with:
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} p_T \sim \frac{p_T}{2},
$$
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} p_T \sim \frac{p_T}{2},
$$
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} p_T \sim \frac{p_T}{2},
$$
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} p_T \sim \frac{p_T}{4},
$$
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} m_t \sim \frac{H_T}{4},
$$
\n
$$
\mu_{\text{core}} \Longrightarrow \frac{1}{2} \sqrt{\frac{4}{5}} m_t \sim \frac{H_T}{4},
$$

NNLO