MICHIGAN STATE UNIVERSITY

Search for resonances decaying to a top quark pair at $\sqrt{s} = 13$ TeV with the ATLAS detector

Kuan-Yu Lin (Michigan State University) 05/17/2019

- Theoretical motivation
- Two search analysis:
 - All-jets final states (arXiv:1902.10077, accepted by PRD)
 - Lepton-plus-jets final states (Eur. Phys. J. C 78 (2018) 565)

Outline

4 types of Z'

- Couples stronger to up-type quarks than down-type quarks
- Cross-section increases with width
- Harris, R.M. & Jain, S. Eur. Phys. J. C (2012) 72: 2072.

- Randall-Sundrum: warped extra-dimension
- Alleviates hierarchy problem of Higgs mass
- Right handed top quark closer to IR brane to gain large Yukawa coupling with Higgs

Kaluza Klein boson

raoulma.github.io/index.html

IR brane $(|\phi| = \pi)$

Dark matter mediators

- Simplified models allows dark matter to annihilate through a mediator (vector or axial for results shown today) to ordinary matter
- Using measured DM relic density, we can search for the DM mediator through its couplings to quarks to constrain other free parameters in the model

arXiv:1703.05703 [hep-ex]

All-jets final states

Event selection

- Two **independent** selection optimized for different Z' mass
- Resolved:

 - ≥ 6 calo jets. At least 5 p_T > 75 GeV and two $|\eta| < 1.6$ plus loosely b-tagged • Assign these jets into 2 buckets based on top mass criterion and each bucket has exactly 1 loose b-tagged jet
 - Categorize events based on W mass criterion and tight b-tagging
- Boosted:
 - 1 $p_T > 500$ GeV & 1 $p_T > 400$ GeV large-radius jets separated by azimuthal angle > 1.6. Each jet contains \geq 1 b-tagged track jet
 - Categorize events based on large-radius jet mass, subjettiness τ_{32} of the 2 pT leading large-radius jet and tight b-tagging

MICHIGAN STATE ERSITY

Lower pt, lower mass

MICHIGAN STATE VERSITY Boosted selection - mass categorization U N

Boosted: R1, tight τ_{32} & 2 b-tag

m_tī spectrum

- tt estimated by MC
- Multi-jet estimated by Data
 - 2D sideband (ABCD) method
 - Resolved: mass criteria of buckets vs. number of tight b-tag jets
 - Boosted: large-R jet mass vs. number of tight btagged track jets

MICHIGAN STATE U N I V E R S I T Y

m_tī spectrum

 10^{8} Events / 100 GeV Data ATLAS 10 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Multijet 10^{6} Boosted Total Bkg unc. Pre-Fit Bkg SR2(Tight,2b) 10⁵ ----Post-Fit 10⁴ 10 10^{2} 10 10^{-1} 10^{-2} 10^{-3} 10 Data / Bkg 1.25 0.75 0.5 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 m_{tf}^{reco} [GeV]

MICHIGAN STATE UNIVERSITY TOP-COLOR Z' exclusion limit

Lepton+jets final states

Event selection

- Exactly one e/µ with $p_T > 30$ GeV, $E_T^{miss} > 20$ GeV and $E_T^{miss} + m_T^W > 60$ GeV. At least one b-tagged track jet with $p_T > 10$ GeV
- Boosted:
 - At least one jet with p_T > 25 GeV, ΔR(jet,e/μ) < 1.5 => j_{sel}
 At least one top tagged large-radius jet with p_T > 300 GeV, Δφ(jet,e/μ) > 2.3,
 - At least one top tagged large-radius
 ΔR(jet, j_{sel}) > 1.5
- Resolved (considered if boosted selection fails):
 - At least 4 jets with $p_T > 25$ GeV
 - Passing kinematic optimization algorithm which assign 3 jets into hadronic top decay and 1 to leptonic top decay
- Categorize events based on number of b-tagged track jets with angular matching

MICHIGAN STATE

ERSITY

Resolved signal m_{tt} 0.24⊨ **ATLAS** Simulation, $\sqrt{s}=13$ TeV 0.22 Resolved Arbitrary 0.2 • before boosted-veto 0.18 after boosted-veto 0.16 ······ m(g_{κκ})=0.5TeV, Γ=30%_ 0.14⊨ m(g_{κκ})=1.0TeV, Γ=30%__ 0.12⊨ before boosted-veto ······ m(g_{κκ})=1.5TeV, Γ=30%-0.1⊨ 0.08 after boosted-veto 0.06 0.04 0.02 m(Z')=0.5TeV 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 m(Z')=1.0TeV m(Z')=1.5TeV Arbitrary units **ATLAS** Simulation, √s=13TeV 0.25 Resolved before boosted-veto after boosted-veto 0.2 ••••• m(G_{кк})=0.5TeV 0.15 ···· m(G_{κκ})=1.0TeV

0.1

0.05

2

.8

.6

́ m(G_{кк})=2.0TeV

MICHIGAN STATE U N I V E R S I T Y

Boosted signal $m_{t\bar{t}}$

MICHIGAN STATE V E R S I T Y

Leptonic top mass

MICHIGAN STATE UNIVERSITY

Hadronic top mass

MICHIGAN STATE **ERSITY** $m_{t\bar{t}}$ spectrum (resolved, evs. μ)

- tt estimated by MC
- Multi-jets estimated by ulletmatrix method from data
 - Loose e/µ region
 - Control region by inverting cuts on E_T^{miss} and $E_T^{miss} + m_T^W$
- W+jets estimated by
 - Shape: Sherpa MC
 - Corrections in total yields and flavor components: charge asymmetry data

$\frac{\text{MICHIGAN STATE}}{U N I V E R S I T Y} m_{t\bar{t}} \text{ spectrum (e, resolved vs. boosted)}$

MICHIGAN STATE UNIVERSITY TOP-COLOR Z' EXClusion limit

Summary

- Top color Z', Kaluza Klein gluon & graviton, and vector & axial DM mediators searched by all-jets & lepton+jets final states at 13 TeV
- Both searches have similar signal sensitivity but lepton+jets performed slightly better at low mass

Back-up

MICHIGAN STATE UNIVERSITY Topcolor assisted technicolor

- Has its root in top-color models
 - QCD SU(3) comes from the symmetry breaking of $SU(3)_1 \times SU(3)_2$
 - Coupling of $SU(3)_1 < SU(3)_2$. The later couples to third generation quarks
 - tt condensate to generate large top quark mass and EWSB
- Topcolor assisted technicolor introduces $U(1)_1 \times U(1)_2$
 - Coupling $U(1)_1 < U(1)_2$. The later couples to third generation quarks
 - $U(1)_2$ gives attractive force between tt but repulsive force between bb
 - The tt+bb condensate gives top quark larger mass than bottom quark

arXiv:hep-ph/9911288v1

J • •.•									
Signal		Expected excluded mass [TeV] Observed excluded mass [TeV]						
$Z'_{\rm TC2} \qquad \begin{array}{l} (\Gamma=1\%) \\ (\Gamma=3\%) \end{array}$		$\begin{matrix} [0.57, 2.8] \\ [0.51, 3.6] \end{matrix}$	$\begin{matrix} [0.58, 3.1] \\ [0.53, 3.6] \end{matrix}$						
$Z'_{ m med}$	(vector) (axial-vector	r) $[0.75, 1.07] \cup [2.0, 2.1]$ [1.99, 2.04]	$\begin{array}{l} [0.74, 0.97] \cup [2.0, 2.2] \\ [0.80, 0.92] \cup [2.0, 2.2] \end{array}$						
$g_{\rm KK}$	$(\Gamma = 10\%)$ $(\Gamma = 20\%)$ $(\Gamma = 30\%)$ $(\Gamma = 40\%)$	< 3.5 < 3.4 < 3.3 < 3.2	< 3.4 < 3.4 < 3.4 < 3.4 < 3.4						
Lepton+jets									
Summary of 95 % Confidence Level mass exclusion ranges on benchmark models									
Model C		Observed excluded mass [TeV]	Expected excluded mass [TeV]						
$Z'_{\rm TC2}$ (1% width)		< 3.0	< 2.6						
$Z'_{\rm DM,ax}$		< 1.2	< 1.4						
$Z'_{\rm DM,vec}$		< 1.4	< 1.6						
$G_{\rm KK}$		[0.45, 0.65]	[0.45, 0.65]						
$g_{\rm KK} \ (15\% \ {\rm width})$		< 3.8	< 3.5						
$g_{\rm KK}$ (30% width)		< 3.7	< 3.2						

MICHIGAN STATE UNIVERSITY Summary of mass limits

All-jets

MICHIGAN STATE UNIVERSITY

ATLAS vs CMS Z' limits

MICHIGAN STATE U N I V E R S I T Y

JHEP 04 (2019) 031

MICHIGAN STATE VERSITY

All-jets: exclusion limits

Width $\approx 5.6\%$ mass

MICHIGAN STATE VERSITY

All-jets: exclusion limits

MICHIGAN STATE Lepton+jets: exclusion limits UNIVERSITY

 $BR(g_{KK} \rightarrow t\bar{t}) \simeq 92.5\%$ Width = 30% mass

 $K/M_{Pl} = 1$ BR($g_{KK} \rightarrow tt$) varies from 18% to 68% Width = $3\% \sim 6\%$ mass

MICHIGAN STATE UNIVERSITY Lepton+jets: exclusion limits

MICHIGAN STATE UNIVERSITY Lepton+jets: exclusion limits FATLAS

Width $\approx 5.6\%$ mass

All-jets: selection efficiency times acceptance

Lepton+jets: selection efficiency times acceptance

MICHIGAN STATE Leptonic top mass (muon) VERSITY

MICHIGAN STATE VERSITY Hadronic top mass (muon) SATLAS

MICHIGAN STATE

Leptonic top

Which top matched to b-tagged jet(s)? Hadronic top

VERSITY MUT Spectrum (resolved, e)

Both top

MICHIGAN STATE UNIVERSITY $m_{t\bar{t}}$ spectrum (resolved, μ) Fatlas

MICHIGAN STATE UNIVERSITY Mtt Spectrum (boosted, e)

MICHIGAN STATE UNIVERSITY $M_{t\bar{t}}$ Spectrum (boosted, μ) **EXPERIMENT**

MICHIGAN STATE UNIVERSITY All-jets: Systematic uncertainties

Resolved

Source of uncertainty

Rela

Luminosity

b-tagging efficiency

Small- and large-R JES and JER

 $t\overline{t}$ modeling

Multijet estimation

Extrapolation

PDF

Pileup reweighting

Simulation statistical uncertainty

Total systematic uncertainty

Data statistical uncertainty

$(Z'_{\rm TC2} m = 0.75 \mathrm{TeV})$	Boosted $(Z'_{\rm TC2} \ m = 3 \text{ TeV})$
ative impact on μ	Relative impact on μ
< 0.01	+0.03/-0.03
+0.05/-0.04	+0.07/-0.07
+0.20/-0.24	+0.21/-0.09
+0.34/-0.33	+0.10/-0.09
+0.25/-0.27	+0.16/-0.13
	+0.34/-0.33
+0.07/-0.08	+0.10/-0.10
+0.07/-0.05	< 0.01
± 0.41	
± 0.92	± 0.67
± 0.39	± 0.74

MICHIGAN STATE UNIVERSITY Lepton+jets: systematic uncertainties

Systematic Uncertainty	Background [%]		$Z'_{\rm TC2}, 2 \text{ TeV} [\%]$		$Z'_{\rm TC2}, 3 \text{ TeV} [\%]$	
	resolved	boosted	resolved	boosted	resolved	boosted
$t\bar{t}$ extra QCD radiation	4.0	2.4				
$t\bar{t}$ QCD NNLO	0.8	7.4		_	_	_
$t\bar{t}$ cross-section	5.2	—		_	_	_
$t\bar{t}$ generator	1.7	3.8		_	_	_
$t\bar{t}$ parton shower	0.6	3.2	_	_	_	_
Multi-jet	2.6	2.7	—	—	_	—
Anti- $k_t R = 0.4 \text{ JER}$	1.1	0.2	3.2	0.2	1.2	0.2
Anti- $k_t R = 0.4 \text{ JES}$	5.8	0.9	7.0	0.7	3.6	0.6
Anti- $k_t R = 1.0 \text{ JER}$	0.1	4.0	5.3	3.7	2.0	4.2
Anti- $k_t R = 1.0 \text{ JES}$	0.3	6.0	3.7	4.7	2.8	6.0
b-tagging efficiency	3.2	1.8	1.8	1.9	2.3	2.7
b-tagging extrapolation	2.4	2.3	2.0	0.6	1.2	1.8
Luminosity	1.9	1.9	2.1	2.1	2.1	2.1
Pile-up	4.4	0.5	4.4	0.8	3.9	0.5
Total	11.6	12.8	11.7	7.1	7.6	8.7

More plots & tables

- All-jets final states: <u>https://atlas.web.cern.ch/Atlas/GROUPS/</u> PHYSICS/PAPERS/EXOT-2016-24/
- PHYSICS/PAPERS/EXOT-2015-04/

Lepton+jets final states: <u>https://atlas.web.cern.ch/Atlas/GROUPS/</u>