

Latest Results in Top Quark Physics From ATLAS

Riccardo Di Sipio, University of Toronto

Riccardo Di Sipio, University of Toronto

Why Top Quarks?

Heaviest known particle, only "bare" quark, (meta)stability of the Universe, etc...

- High statistics allows both precision measurement and search for new physics.
- tt complex final state, but not too complex, fostering:
 - Theoretical and experimental advancements
 - Fine details not yet completely understood: NNLO
 calculations still rather new / not matched to PS, tt/tW/WbWb
 interference effects, ...

The many scales of top quark physics Calculations are complicated!

Q [GeV]

Amazing machine & detector performance

Only a very small fraction of the total LHC + HL-LHC luminosity collected/analyzed so far!

~150 fb⁻¹ at √s = 13 TeV collected in Run 2

$$N = \mathcal{L} \cdot \sigma_{t\bar{t}}$$

$$\sigma_{t\bar{t}} \sim 830 \,\mathrm{pb}$$

$$\mathcal{L} \sim 15 \times 10^{33} \,\mathrm{cm}^2 \mathrm{s}^{-1}$$

~750 tt pairs produced per minute

Couplings

Production cross-section(s)
Spin correlation
Polarization
W helicity
Charge Asymmetry
FCNC

Mass

Fundamental parameter of the SM

Searches

Resonant production (Z', g_{KK}) Vector-Like Quarks (VLQ)

Cross-Section

"Can you count how many top quarks are produced?"

Looking at the bigger picture...

Standard Model Production Cross Section Measurements

Looking at the bigger picture...

Standard Model Production Cross Section Measurements

Comparison with theory

Fiducial phase-space

- Similar kinematic reconstruction at detector- and particle-level objects
- Reduce extrapolation uncertainty
- Valid for all Monte Carlo event generators
- Endpoint of the theoretical prediction

Full phase-space

- NNLO+NNLL (+EKW) accuracy only available by asking to the theorists, slow turnaround
- Larger extrapolation to low-p_T, high-η.
- Observables must be infrared safe

Kinematic reconstruction

Single lepton resolved - PseudoTop

Mass constrains (m_W, m_t) and b-tagging information to reconstruct decay chain

Single lepton boosted

- Kinematic constrains to reconstruct $t \rightarrow \ell \nu b$
- Hadronic top = large-R trimmed jet

Dilepton Neutrino weighting

- Kinematic constrains to find optimal longitudinal component of the two neutrinos' momenta [Phys. Lett. B, 752 (2016) 18-26]
- Extra jet may also be photon, $b\bar{b}$ pair

All-hadronic boosted "double double"

Top quark candidates = 2 leading large-*R* trimmed massive jets (*b*- and *top*-tagged)

High-pT (Boosted) Tops

Top quark
Three-prong topology

Trimming

Removes pileup by discarding

R=0.2 subjets

with pT < 5% pT(J)

W boson
Two-prong topology

Quark/gluon Axial topology

Substructure

Distribution in (η,φ,Ε) of calo clusters reflects underlying top quark decay

- *N*-subjettiness ratio τ_{32}
- Soft drop mass, n_{SD}
- ECF, $C_2^{(\beta)}$, $D_2^{(\beta)}$

Top Tagging in a Nutshell

Apply **cut** on **substructure** variable(s) as a function of jet **kinematic** variables (p_T , y, m)

tt total xs (QCD)

Inclusive cross-section in very good agreement with NNLO+NNLL calculations

 $\Delta \sigma(\exp) \lesssim \Delta \sigma(th)$

Possible deviations still allowed:

- small corners of the phase-space
- differential cross-sections
- associate production

Top Transverse Momentum

- Most important observable?
- Different kinematic regimes and reconstruction techniques [0, ~1 TeV]
- Sensitive to final state radiation,
- Very precise low- p_T differential cross-sections indicate **disagreement** with increasing p_T

Uncertainties: Top quark pt

Single lepton

Jet energy scale 5% b-tagging < 5% Background modelling (low pT) 2%

→ Signal modelling (high pT) 5%

Dilepton

→ Signal modelling >10%PDF 5%b-tagging < 5%

All hadronic

Jet energy scale 5% Top-tagging 10% b-tagging < 10%

→ Signal modelling (ps/had) 15%

tt invariant mass

- Generally well modelled, no obvious peaks hinting at BSM particles
- All-Hadronic boosted best resolution to this date at mass > 1 TeV

Extra radiation

"out-of-plane" momentum (correlated with $p_T{}^{tt}$ and $\Delta\phi^{tt})$

- Additional radiation (esp ISR) test NLO, NNLO calculations
- Very useful for MC tuning

- Poorest data/PP6 disagreement in tt (ℓν2j2b)+ 0j
- Improved agreement with more additional jets

Extra radiation (HF)

- Associated emission of tt + bb heavy flavour complicated process!
- Crucial background to tt+Higgs

Predictions lower than observed

5FS better?

Extra radiation (HF)

- Associated emission of tt + bb heavy flavour complicated process!
- Crucial background to tt+Higgs

Extra radiation (y)

- Top quarks have EM charge, emit light!
- But also quarks in the initial state...
- Probes compositeness: t* →ty

PDF Fit

- ATLASepWZtop18: NNLO pQCD fit using ATLAS differential cross-sections at 7 TeV (W, Z/γ*) and 8 TeV (tt p_T, m_{tt} single lepton, y_{tt} dilepton) + HERA e±p data
- Good fit to data when p_T^t and m_{tt}
 used separately, pull opposite ways
 > decorrelation, effect due to IFSR
 modelling systematic. No
 significant impact on the shape of
 gluon PDF
- Impact of top diffxs: harder PDF, reduced high-x gluon uncertainty

MC Modeling

Early Run2 measurements:
 Setup derived from extrapolation of 8 TeV diffxs.
 PWG+P6 workhorse, MC@NLO and H++

systematics, IFSR P2012

- Baseline Run2 measurements:
 Iterative process, make use of early Run2 results
 PWG+Pythia8 nominal, MG5_aMC@NLO and
 Herwig7 systematics, IFSR A14 tune
- Clear reduction of systematic uncertainties

Single top (EWK)

t-channel Most abundant, Constrains PDF

tW-channel
Interference with tt

s-channel
Small cross-section,
BSM resonances?

t-channel

d W* W+

- Is there a mismodeling (slope) here, too?
- Synergies with tt?

JHEP 04 (2017) 124

t-channel

Polarization observables extracted from angular asymmetries

Set limits on anomalous couplings

Single top + W/Z

Associate production with boson established tW differential cross-sections $tZq @ 4.2\sigma$ evidence (CMS >5 σ , 77 fb⁻¹)

tt/tW interference

- Double slit experiment with top quarks!
- Doubly (tt) and singly (tWb)
 resonant productions have
 similar final states and thus
 interfere
- Interference "removed" with
 - "Traditional" methods (diagram removal, diagram subtraction)
 - Fully-consistent treatment (POWHEG bb4l)

tt/tW interference

- Double slit experiment with top quarks!
- Doubly (tt) and singly (tWb)
 resonant productions have
 similar final states and thus
 interfere
- Interference "removed" with
 - "Traditional" methods (diagram removal, diagram subtraction)
 - Fully-consistent treatment (POWHEG bb4l)

tt/tW interference

- Invariant mass (b, ℓ)
 characteristic distribution in presence of resonance
- $m_{b\ell}^{minimax}$ sensitive to interference effects in the tail
- Uncertainty small enough to constrain different treatments
 - Resonance-aware treatment in better agreement with data

$$m_{b\ell}^{ ext{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$$

$$m_{b\ell}^{\text{minimax}} < \sqrt{m_t^2 - m_W^2}$$

Charge Asymmetry

- Interference effects between LO and NLO diagrams
- Born experimentally at FNAL/Tevatron circa 2011 (pp̄) as "forward-backward asymmetry"

$$A_{FB} = \frac{N(y_t > 0) - N(y_{\bar{t}} > 0)}{N(y_t > 0) + N(y_{\bar{t}} > 0)}$$

CERN/LHC is pp collider, rapidity-symmetric tt
production, hence different observable

$$A_{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

^{7. [}CDF Collaboration], CDF Conf. Note 10436, March 2011.

^{8.} T. Aaltonen *et al.* [CDF Collaboration], Phys. Rev. Lett. **101** (2008) 202001 [arXiv:0806.2472 [hep-ex]].

^{9.} V. M. Abazov et al. [D0 Coll.], Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995 [hep-ex]].

^{10. [}D0 Collaboration], D0 Note 6062-CONF, July 2010.

^{11.} V. M. Abazov *et al.* [D0 Collaboration], Phys. Rev. Lett. **100** (2008) 142002 [arXiv:0712.0851 [hep-ex]].

Charge Asymmetry

Inclusive tt

Differential tt (Ac vs mtt)

- The precision of the combination is significantly improved wrt individual measurements.
- In **agreement with SM** calculations at NLO and NNLO and also compatible with <u>zero asymmetry</u>

Spin Correlations

$$x_i = f_{\text{SM}} \cdot x_{\text{spin}, i} + (1 - f_{\text{SM}}) \cdot x_{\text{nospin}, i}$$

- In the SM, the spins of the two tops are completely correlated $(f_{SM}=1)$, hence leptons' P4
- Additional particles or nonstandard couplings can change the effective correlation...
- ...but also higher-order terms have an impact
- Top p_T reweighting consistent with NNLO calculation, does not explain the discrepancy

arXiv:1903.07570

Spin Correlations

$$x_i = f_{\text{SM}} \cdot x_{\text{spin}, i} + (1 - f_{\text{SM}}) \cdot x_{\text{nospin}, i}$$

- In the SM, the spins of the two tops are completely correlated $(f_{SM}=1)$, hence leptons' P4
- Additional particles or nonstandard couplings can change the effective correlation...
- ...but also higher-order terms have an impact
- Top p_T reweighting consistent with NNLO calculation, does not explain the discrepancy

Parton level $\Delta \phi(I^{\dagger}, \bar{I})/\pi$ [rad/ π]

Spin Correlations

Region	$f_{\text{SM}} \pm (\text{stat.,syst.,theory})$	Significance (excl. theory uncertainties)
Inclusive	$1.249 \pm 0.024 \pm 0.061 \pm 0.040$	3.2 (3.8)
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 ^{~+0.12}_{-0.13} \pm 0.02$	0.86 (0.87)
$450 \le m_{t\bar{t}} < 550 \; \mathrm{GeV}$	$1.18 \pm 0.08 ^{~+0.13}_{~-0.14} \pm 0.08$	1.0 (1.1)
$550 \leq m_{t\bar{t}} < 800 \; \mathrm{GeV}$	$1.65 \pm 0.19 ^{~+0.31}_{-0.41} \pm 0.22$	1.3 (1.4)
$m_{t\bar{t}} \geq 800 \text{ GeV}$	$2.2 \pm 0.9 ^{ +2.5}_{ -1.7} \pm 0.7$	0.58 (0.61)

Best-fit f_{SM} increases with m_{tt} , but large uncertainties reduce significance

Data/NLO QCD+EW good agreement, but scale μ = m_{top} very *ad hoc* and yielding large systematics

Problem with calculation...or new physics?

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

WZ

tt+W/Z

Many final states with 2–4 leptons

Observed cross-sections in

agreement with SM

Limits set to EFT O₆ Wilson coefficients

tt+H (or H+tt?)

- Probes Yukawa coupling (is the top quark the only "natural" quark?)
- Combination of H→bb,WW*,ττ,γγ,ZZ* >5σ

tt+tt

- Very small SM cross-section, but enhanced in many BSM models
- Background to tt+H, very complicated final state

Top Mass and Width

"Isn't the top quark just two numbers?"

Top Mass

- No consensus on actual definition when precision < 0.5 GeV ~Λ_{QCD}.
 Not a matter of taste but a profound lack of a clear definition.
- Direct measurements: invariant mass of decay products: M_{eb}, M_{eJ/ψ} ("MC mass")
- Indirect measurements: measure some property that has a known dependence on top mass, e.g. cross-section, ρ_S

Words of Wisdom

"A mass parameter extracted from a measurement depends mostly on an observable rather than a simulation tool"

-Kirill Melnikov, Paolo Nason SM@LHC 2019, Zurich

"Mass is the parameter most precisely known but imprecisely understood"

Paul Grannis,
The coming of age of the top quark

Top mass (indirect)

- Total and differential cross-section(s) depend on top mass
- Cross-section of tt+1jet depends on the top mass

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \cdot \frac{d\sigma_{t\bar{t}+1\text{-jet}}}{d\rho_s}$$

$$\rho_s = \frac{2 \times 170 \ GeV}{m_{t\bar{t}+1j}}$$

Top mass (direct)

- tt̄→lepton + jets, clean signature
 - Exploiting a 3D template technique, the top quark mass is determined together with a global jet energy scale factor and a relative bto-light-jet energy scale factor.
- tt̄→all jets, large BR, full kin reco, data-driven bkg
 (N_b, Δφ(b, W))
 - Ratio of invariant masses $R_{3/2} = \frac{m_{jjj}}{m_{ij}} \sim \frac{m_{to}}{m_W}$

Observables dependent on JES, bJES and m_{top}

Top Width

Simultaneous fit of 16 observables in lepton+jets channel

$$\Gamma_t = 1.76 \pm 0.33(\text{stat.})^{+0.79}_{-0.68}(\text{syst.}) \text{ GeV}$$

Top width affects observable such as $m(\ell,b)$ and $\Delta R_{min}(j,b)$

Search for New Physics

"Maybe the Nobel Prize should be awarded to the physicist who discovered no new particle this year?"

J. Robert Oppenheimer

You don't discover a fundamental particle every year anymore

"Hey mom, can you go to the public library?"

Charm

(SLAC/BNL) (SLAC)

Tau

Quarks

(SLAC)

1968

6 yrs

You don't discover a fundamental particle every year anymore

"Hey mom, can you go to the public library?"

Charm

(SLAC/BNL) (SLAC)

Tau

Quarks

(SLAC)

1968

6 yrs

X-tt Resonances

Look for bumps in tt invariant mass: Narrow resonance Broad resonance

X→tb,TZ,tH Resonances

- Look for bumps in (t,b) or (t,H) invariant mass spectrum
- · Vector-Like Quarks (VLQ): quarks with vector-like interactions with other particles.
- W'_R and W'_L: additional gauge bosons, mediator of a new charged vector current

Observed 95% CL limit

Expected 95% CL limit

Expected 95% CL limit $\pm 1 \sigma$

Expected 95% CL limit $\pm 2\sigma$

NLO W' cross-section (ZTOP)

Supersymmetric Scalar Tops

Reclustered R=1.2 jet

heavy stops almost produced at rest, low momentum → unusually large jet radius

Signal xs depends on stop and neutralino masses

Set limits using simplified models

Stops from Spin Correlations

"Searches never stop"

FCNC

- Flavour-changing neutral currents strongly suppressed in the SM, but enhanced in some BSM scenarios
- Look for tt→WbHq (W→qq/ ℓν,H→γγ/bb)

m_{γγ} [GeV]

Conclusions

- A journey of thousands miles begins with a single step. Current ATLAS
 top analyses ≤ 36 fb⁻¹ prepared the stage for full Run2 measurements
- Tensions in top pT and Spin Correlations not yet completely understood, NNLO(QCD)+NLO(EW) corrections matter
- ATLAS baseline POWHEG + Pythia8 globally good, but underwent significant tuning compared to other generators
- Hard-scattering and parton-shower modelling still a big source of systematic uncertainty limiting top measurements and searches
 - Tick-tock approach to reduce modelling systematics works!
 - Run1 measurements used to improve PDFs

Backup