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Goal of the talk

tt̄ like BSM events (stop → chargino → sneutrino)
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I We’ll come up with a bump hunt method to search for this
signal despite having two invisible particles in the final state

I Then we’ll relate this method to SM tt̄ events
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Understanding the event space...
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Masses mt̃ , mW̃ and mν̃ are apriori unknown.

I There are 6 final state particles. 4×3 + 2×4 = 20
momentum components.

I 12 or these are visible and the other 8 are
invisible.

I The distribution of events in this 20 dimensional
space is affected by

1. 2 final state particle mass constraints
(exact).

2. 4 intermediate particle mass constraints
(approximate).

3. 2 MET constraints. ®pν̃,T + ®p¯̃ν,T =��®pT
4. Parton distribution functions.
5. Decay angles at the decay vertices (weak dependence).

I Number of constraints matches the number of invisible momentum
components. The invisible momenta can be solved for (upto
discrete ambiguity) assuming test values for the unknown masses.
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Constraint counting...

Notation:
N : Total number of final state momentum components. 20 in our

case.
Nvis : Number of visible momentum components. 12 in our case.

Ninvis : Number of invisible momentum components. 8 in our case.
Ncons : Number of non-degenerate equality constraints on the N

momentum components. 8 in our case.
I Full-events are constrained to be on an N − Ncons dimensional

manifold within the N dimensional full-event-space.
I ‘Visible events’ are constrained to be on the projection of this

manifold on the Nvis dimensional visible-event-space.
I The dimensionality of this projection is min(N − Ncons,Nvis).
I In our case, events lie on a 12 (N − Ncons) dimensional

manifold within the full event space. This gets projected onto
a 12 (Nvis) dimensional visible-event-space. The projection has
the same dimensionality.
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Special case: N − Ncons = Nvis or Ncons = Ninvis

visible momenta
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I Jacobian factor when projecting surface onto a hyper-plane of
same dimensionality

I Probability density has a singularity where the surface is
perpendicular to the visible space.

I Extreme events — degenerate solutions when solving for
invisible-momenta

I Examples: Projecting a circle on a line or hollow sphere on a
2-D plane
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Special case: N − Ncons = Nvis or Ncons = Ninvis
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Projection of points uniformly distributed on a hollow sphere onto a
2D plane

(With a background)

Signal-Background ratio peaks for extreme events
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Special case: N − Ncons = Nvis or Ncons = Ninvis
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2 I The shape of the projection and the
location of the extreme events are
characteristic of the unknown mass
parameters

I Idea: Map only the extreme events
of a parameter-point to it

I In other words, map an event to all
points in the parameter space for
which that event would be an
extreme event
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Back to our tt̄ like BSM events
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Let’s work with on-shell events at LHC energy with the following
“true” mass spectrum

mt̃ = 1000 GeV, mW̃ = 800 GeV, mν̃ = 700 GeV.

7 / 13



Solvability

Two sample events
m̃ν̃ = 700 GeV = mν̃
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

1 event
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

2 events
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

5 events
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

10 events
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

20 events
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Extremeness boundaries
“Map an event to all points in the parameter space for which that event would be an

extreme event” – Boundaries where no. of solutions changes

m̃ν̃ = 700 GeV = mν̃

50 events (Extreme events are abundant!)
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Bump hunt for diagram with missing particles!

MONEY PLOT!
Fraction of events whose extremeness boundaries pass through

a 10 GeV x 10 GeV square
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Bump hunt for diagram with missing particles!

m
W (G

eV)
1e30.60.70.80.91.0

mt(GeV)1e3
0.8 0.9 1.0 1.1 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

mW(GeV)1e3
0.6 0.7 0.8 0.9 1.0

m
t (G

eV)
1e3

0.80.91.01.11.2
0.0
0.1
0.2
0.3
0.4
0.5
0.6

mW(GeV) 1e3
0.60.70.80.91.0mt(GeV)

1e3
0.8 0.9 1.0 1.1 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 / 13



Statistics

I Each event provides a candidate curve (extremeness boundary)
of masses in the 2D parameter space (or candidate surface in
3D). We see a sharp peak in the density of these curves at the
true mass.

I Statistics of these extremeness curves or surfaces isn’t straight
forward.

I The number of events passing through a certain well-defined
region is a Poisson distributed random variable.

I But an event passing through a certain region/bin isn’t
independent of it passing through other bins. This needs to be
properly accounted for to keep the look-elsewhere effect under
control.

I Work needs to be done to turn this into a BSM search
technique.

I In the meantime, it can be used in SM tt̄ physics – to enhance
tt̄ events as a signal... to remove them as background... to
measure top mass...
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SM tt̄ vs irreducible bg (mostly single t)

tt̄ events
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I These are not probability density heatmaps.
I The signal-bg separation is better than this picture might

suggest.
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A preliminary 1d plot and future work

I We set the neutrino mass to 0 to get a 1D curve in a 2D parameter
space.

I Similarly, we can set W mass to its true value to get points in the
1D parameter space.

I This can be used in top mass measurement.
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Notes

I No detector simulation. Jet
resolution will smear the peak.

I Each event contributes multiple
points to the histogram. Upto 12
for one lepton-quark pairing!
Typically 4.

I Can also use the slope the curves
make at the mW intercept in top
mass measurement.
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Thank you!
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