A kinematic focus point method for mass measurements in ttbar events

> Prasanth Shyamsundar University of Florida

based on work with Prof. Konstantin Matchev Dr. Doojin Kim

Top Quark Physics at the Precision Frontier Workshop May 15, 2019

Goal of the talk

- ► We'll come up with a bump hunt method to search for this signal despite having two invisible particles in the final state
- \triangleright Then we'll relate this method to SM $t\bar{t}$ events

Understanding the event space...

 $\mathsf{Masses}\; m_{\tilde{t}},\; m_{\tilde{W}}$ and $m_{\tilde{\nu}}$ are apriori unknown.

- There are 6 final state particles. $4 \times 3 + 2 \times 4 = 20$ momentum components.
- \blacktriangleright 12 or these are visible and the other 8 are invisible.
- \triangleright The distribution of events in this 20 dimensional space is affected by
	- 1. 2 final state particle mass constraints (exact).
		- 2. 4 intermediate particle mass constraints (approximate).
- 3. 2 MET constraints. $\vec{p}_{\tilde{v},T} + \vec{p}_{\tilde{v},T} = \vec{p}_T$
- 4. Parton distribution functions.
- 5. Decay angles at the decay vertices (weak dependence).
- \triangleright Number of constraints matches the number of invisible momentum components. The invisible momenta can be solved for (upto discrete ambiguity) assuming test values for the unknown masses.

Constraint counting...

Notation:

- *N* : Total number of final state momentum components. 20 in our case.
- *N*vis : Number of visible momentum components. 12 in our case.
- *N*invis : Number of invisible momentum components. 8 in our case.
- *N*cons : Number of non-degenerate equality constraints on the *N* momentum components. 8 in our case.
	- **►** Full-events are constrained to be on an $N N_{\text{cons}}$ dimensional manifold within the *N* dimensional full-event-space.
	- \triangleright 'Visible events' are constrained to be on the projection of this manifold on the N_{vis} dimensional visible-event-space.
	- **►** The dimensionality of this projection is $\min(N N_{\text{cons}}, N_{\text{vis}})$.
	- \triangleright In our case, events lie on a 12 ($N N_{\text{cons}}$) dimensional manifold within the full event space. This gets projected onto a 12 (*N*vis) dimensional visible-event-space. The projection has the same dimensionality.

- \triangleright Jacobian factor when projecting surface onto a hyper-plane of same dimensionality
- \triangleright Probability density has a singularity where the surface is perpendicular to the visible space.
- Extreme events $-$ degenerate solutions when solving for invisible-momenta
- Examples: Projecting a circle on a line or hollow sphere on a 2-D plane

Projection of points uniformly distributed on a hollow sphere onto a 2D plane

Projection of points uniformly distributed on a hollow sphere onto a 2D plane (With a background)

Projection of points uniformly distributed on a hollow sphere onto a 2D plane (With a background)

Signal-Background ratio peaks for extreme events

 \blacktriangleright The shape of the projection and the location of the extreme events are characteristic of the unknown mass parameters

- \blacktriangleright The shape of the projection and the location of the extreme events are characteristic of the unknown mass parameters
- \blacktriangleright Idea: Map only the extreme events of a parameter-point to it
- \blacktriangleright In other words, map an event to all points in the parameter space for which that event would be an extreme event

Back to our $t\bar{t}$ like BSM events

Let's work with on-shell events at LHC energy with the following "true" mass spectrum

 $m_{\tilde{t}} = 1000 \text{ GeV}, m_{\tilde{W}} = 800 \text{ GeV}, m_{\tilde{V}} = 700 \text{ GeV}.$

Solvability

Bump hunt for diagram with missing particles!

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
 \tilde{m}_{μ} (GeV) 1e3 \tilde{m}_W (GeV)

0.0

Bump hunt for diagram with missing particles!

mali
Gev $\frac{16}{0.8}$ 10.0 0.1 0.2 $b_{0.3}$ $b_{0.4}$ $b_{0.5}$ 0.6

Statistics

- \triangleright Each event provides a candidate curve (extremeness boundary) of masses in the 2D parameter space (or candidate surface in 3D). We see a sharp peak in the density of these curves at the true mass.
- ▶ Statistics of these extremeness curves or surfaces isn't straight forward.
- \blacktriangleright The number of events passing through a certain well-defined region is a Poisson distributed random variable.
- \triangleright But an event passing through a certain region/bin isn't independent of it passing through other bins. This needs to be properly accounted for to keep the look-elsewhere effect under control.
- \triangleright Work needs to be done to turn this into a BSM search technique.
- In the meantime, it can be used in SM $t\bar{t}$ physics to enhance $t\bar{t}$ events as a signal... to remove them as background... to measure top mass...

SM *t*¯*t* vs irreducible bg (mostly single *t*)

 $t\bar{t}$ events

Irreducible bg events

- \blacktriangleright These are not probability density heatmaps.
- \triangleright The signal-bg separation is better than this picture might suggest.

A preliminary 1d plot and future work

- \triangleright We set the neutrino mass to 0 to get a 1D curve in a 2D parameter space.
- \triangleright Similarly, we can set W mass to its true value to get points in the 1D parameter space.
- \blacktriangleright This can be used in top mass measurement.

Notes

- \triangleright No detector simulation. Jet resolution will smear the peak.
- \blacktriangleright Each event contributes multiple points to the histogram. Upto 12 for one lepton-quark pairing! Typically 4.
- \blacktriangleright Can also use the slope the curves make at the m_W intercept in top mass measurement.

Thank you!