Experimental Methods in Hadron Colliders

Cecilia E. Gerber University of Illinois – Chicago 2019 CERN LATIN-AMERICAN SCHOOL OF HEP Cordoba, Argentina, March 13-26, 2019

Outline

- Hadronic Collisions: The Basics
 - The Large Hadron Collider
 - The Anatomy of Hadronic Collisions
 - Particle Detectors & Detector Technologies
- Experimental Methods
 - Object Identification
 - The Particle Flow Event Reconstruction
 - Jet Substructure Techniques
 - Physics of Hadron Collisions: Measuring Production Rates & Masses
- Down the Standard Model Ladder
 - QCD, W/Z, Top, Higgs
- Beyond the Standard Model Searches
 - Motivation and some examples
- Outlook: HL-LHC and beyond

OBJECT IDENTIFICATION

From detector pulses to a particle trajectory

Building Clusters

- Silicon trackers: Reverse-biased p-n junction
 - Electric field sweeps out any thermally produced electron-hole pairs (fully depleted sensor)
 - Charged particle produces electron-hole pairs which induce signal on implanted electrodes
 - On-detector electronics amplify signal, apply threshold and/or pedestal subtraction
 - Adjacent pixel/strips with charge combined into clusters

Building hits

- Start from charge information: cluster centroid
 - Interpolate from edges or make a template fit latter has significant advantage after irradiation
- But need *resolution* of hit location for track fit
 - Resolution = width of (Gaussian) distribution of residuals (difference between track position and estimated cluster centroid)

Building tracks

- Particle trajectory are reconstructed from hits in the detectors
- Seed tracks built with 3-4 hits in pixel detector
- Kalman filter for track extrapolation and subsequent fit to helical trajectory

Tracking performance

- Tracking is fundamental to charged particle reconstruction + ID
- Helical trajectory defined by 5 track parameters
 - 2 impact parameters
 - 2 angles
 - curvature/momentum
- For each track, interested in
 - Transverse momentum
 - Impact parameter
 - Displaced tracks from decay of particles such as b-quark hadrons
- Vertex reconstruction

Tracking performance at CMS

Harder to measure curvature of straighter (higher-momentum) tracks

curvature

Harder to extrapolate lower-momentum tracks: scattering in material matters

 $\left(rac{\sigma_{p_T}}{p_T}
ight)^2 \propto c_1 \cdot \left(rac{p_T}{BL^2}\sqrt{rac{720}{N+4}}
ight)^2$

$$^{2}+c_{2}\cdot\left(rac{1}{B\sqrt{LX_{0}}}
ight)^{2}$$

multiple scattering

For CMS:

magnetic field B = 3.8 Ttracker radius L = 1.2 mnumber of measurements N >10

Muon Identification

- Local Muon
 - Hits from subdetectors
 - Track Segments from hits
- Standalone Muon
 - Combine track segments into a muon trajectory in muon system
- Global Muon
 - Reconstruct Muon Tracker Track
 - Combine Standalone muon and Muon Tracker Track into a Global Muon (global fit)

Muon Identification

- Local Muon
 - Hits from subdetectors
 - Track Segments from hits
- Standalone Muon
 - Combine track segments into a muon trajectory in muon system
- Global Muon
 - Reconstruct Muon Tracker Track
 - Combine Standalone muon and Muon Tracker Track into a Global Muon (global fit)

Muon Identification

- Local Muon
 - Hits from subdetectors
 - Track Segments from hits
- Standalone Muon
 - Combine track segments into a muon trajectory in muon system
- _Global Muon
 - Reconstruct Muon Tracker Track
 - Combine Standalone muon and Muon Tracker Track into a Global Muon (global fit)

Calorimeter Cluster Reconstruction

- Clusters are reconstructed from seeds, which start from cells with the highest energy deposits (> 4σ), clustered with neighbors of > 2σ
- Apply energy corrections and classify clusters in EM and hadronic depending on the fraction of energy in each Cal

Combine with tracking information

γ/e Reconstruction

- 97% of unconverted photon is contained in a 5x5 crystal matrix.
- The electron energy is spread in φ due to the solenoidal magnetic field
 - Electrons radiate by bremsstrahlung
 - Photons have 50% probability to convert to e⁺e⁻ in the tracker
- Define Superclusters to recover energy
 - Narrow rows in $\eta,$ long in bending direction ϕ
- Photons: no pixel hits consistent with track from interaction region
- Electrons: pixel hits match required
 - E & p_T is a combination of Ecal and tracking information.

Tau Identification

- Large mass (1.77 GeV) as compared to μ (106 MeV) and electron (0.5 MeV)
- Hadronic decay 2/3 of the time
- Typically one or three charged mesons (π⁺,π⁻), up to 2 neutral mesons (π⁰), and a ν_τ, with π⁰ decaying to two γ
- Appears in detector as a narrow jet
- Additional ID obtained from tracking information (1 and 3 prong decay)
- Leptonic decay typically included in electron/muon final state with lower efficiency due to the lower p_T of the secondary lepton

Jets

- Experimental signature of quarks and gluons
 - spray of collimated colorless particles
- Parton jet
 - made of quarks and gluons (after hard scattering and before hadronization)
- Particle jet
 - composed of final state colorless particles (after hadronization)
- Detector jet
 - reconstructed from measured energy depositions and tracks

Jet Identification

using ECAL and HCAL information

Jet plus Track

Calorimeter Jets

using ECAL, HCAL, and TRACKER information

 from identified charged and neutral hadrons, γ,

 e, μ using all detector

components

Particle Flow Jets

- Clustering algorithm defines the jet
 - may be applied at any level (parton, particle, detector)
 - takes as input different elements (Calo, Tracks, PF)
- Two main types:
 - Fixed Cone & Sequential Clustering

Jet Clustering Algorithms

Sequential Clustering Fixed Cone **Fixed** Cone $R^2 = \eta^2 + \phi^2$ Variations in how to choose seed and cone size (R = 0.3...1.0) Sequential Clustering 3 4 Pairwise examination of input 4-vectors Merging determined by proximity in space and transverse momentum arXiv:0802.1189 If $d_{ij} < d_{ii}$, combine particles k_T, β =1 $CA, \beta = 0$ p [GeV] p [GeV] If $d_{ii} < d_{ii}$, i is a jet $d_{ij} = \min(p_{T,i}^{2\beta}, p_{T,J}^{2\beta}) \frac{\Delta R_{ij}^2}{R^2} \qquad d_{ii} = p_{T,i}^{2\beta}$ Fixed R=1 A-k_T, β =-1 p, [GeV] p [GeV] 20 Anti- k_T -1, Anti- k_T 0, Cambridge-Aachen 15 10 $\beta = \langle$ k_T

b-jet Identification

- Semileptonic decays of the b-quark
 - B(b $\rightarrow \mu$ + X) $\approx 20\% \Rightarrow$ detect μ in jets

- b-tagging algorithms combine with a multivariate approach the information from:
 - impact parameter significance of charged-particle tracks
 - the presence of a lepton in the jet and its properties
 - the presence and properties of reconstructed secondary vertices

- life time $\approx 1.5 \text{ ps} \Rightarrow c\tau \approx 0.5 \text{ mm}$
 - Look for secondary vertices or tracks with large impact parameter w.r.t. interaction point

Missing Transverse Energy (MET)

- SM processes producing MET
 - Leptonic decays of top and W boson
- New Physics processes producing MET
 - Weakly interacting exotic particles in models with extra dimensions: monojets + MET
 - Production of Lightest SUSY Particles (LSP) in cascade decays, which would go undetected.

• Fake MET originates from non-reconstructed particles or from non-uniform detector response

We infer the presence of a neutrino or any other particle that does not interact with our detector from the imbalance in the transverse momentum

PARTICLE FLOW EVENT RECONSTRUCTION

Set the Stage: Jet Composition

- Charged particles : ~60%
 - Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons : $\sim 25\%$
 - Mostly from π^0 's, but also some genuine photons (bremstrahlung)
- Long-lived neutral hadrons : ~10%
 - K^0_L , neutrons
- Short-lived neutral hadrons, "V0's" : ~5%
 - $K^0{}_S \rightarrow \pi^+\pi^-$, $\Lambda \rightarrow \pi^-p$, ..., but also γ conversions, and (more problematic) nuclear interactions in the detector material

Set the Stage: Jet Composition

- Charged particles : $\sim 60\%$
- Trackin Mostly charged pions, kaons and protons, but also some electrons and muons
- Photons : $\sim 25\%$
 - Mostly from π^0 's, but also some genuine photons (brems,.)
- Long-lived neutral hadrons : $\sim 10\%$
 - $K_{\rm L}^0$, neutrons
- Short-lived neutral hadrons, "V0's" : ~5%
 - $K^0_S \rightarrow \pi^+\pi^-, \Lambda \rightarrow \pi^- p, ...,$ but also γ conversions, and (more problematic) nuclear interactions in the detector Trackin material

Full use of Detector Information should significantly improve Jet performance

Back-of-the-envelope estimate for π^{\pm}

• Calorimeter transverse energy uncertainty for charged hadrons:

$\sigma(E_T) \approx 100\% \sqrt{E_T}$

• Tracker transverse momentum uncertainty for charged hadrons:

$$\sigma(p_T) \approx 0.01\% \ (p_T)^2$$

• The point at which the calorimeter resolution overcomes the tracker resolution is (very roughly):

$$\frac{\sigma(p_T)}{p_T} \approx \frac{\sigma(E_T)}{E_T} \qquad \rightarrow \quad p_T \approx 10^{\frac{8}{3}} \approx 464 \text{ GeV}$$

Goals of Particle Flow

- Reconstruct and identify all particles
 - $-\gamma$, e, μ , $\pi \pm$, K_L^0 , pile-up $\pi \pm$, converted g & nuclear interaction $\pi \pm$,...
 - Use best combination of all sub-detectors for E, η, ϕ, p_{ID}
- Provide consistent & complete list of ID's & calibrated particles for
 - Tau reconstruction & Jet reconstruction
 - Missing & total Visible Energy determination
 - Other, analysis specific, objects (event or jet shape variables, etc.)
- Use of Redundant Information: Calorimeter & Tracking
 - Good: Better Calibration (data driven) and Resolution possible
 - Challenge: Must have accurate accounting
- Very different from "Traditional" Tau, Jet, MET Reconstruction...

Required Elements for PF

- Large Volume Tracker
 - high precision, high efficiency tracking is critical
- High Magnetic Field
 - needed for good p_T resolution
 - needed to separate charged from neutral particles
- Highly Granular Calorimeter
 - needed to separate charged from neutral particles
- Good Calorimeter Energy Resolution is :
 - needed for good photon, electron E resolution
 - not so critical for Hadrons
- Originally developed in lepton colliders
 - Adopted by CMS, now also by ATLAS

CMS is ideally suited to exploit the Particle Flow Event Reconstruction Calorimeter Tower

o 1 HCAL Cell

<u> A</u>

• 25 ECAL Crystals underneath (loss of granularity)

Calorimeter Jets

- Large Jet E Corr.
- Resolution HCAL

Charged hadrons Calorimeter Tower spread by high B-field 1 HCAL Cell degrades angular resolution 25 ECAL Crystals underneath 0 (loss of granularity) <u>AA</u> Calorimeter Jets Large Jet E Corr 0 **Resolution HCAL** 0 100% σ 2 Ε \sqrt{E}

First Associate Hits within Each Detector

Then Link Across Detectors

Finally Apply Particle ID & Separation

"Clean" the Event During Reconstruction

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons ($\min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" converted photons ($\min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" charged hadrons (σ_{track})
- Find and "remove" V⁰'s (σ_{track})
- Find and "remove" photons (σ_{ECAL})
- Left with neutral hadrons $(10\%) (\sigma_{HCAL} + fake)$
- Use above list of Reconstructed Particles to describe the entire event

Let's take a simple example

Jet pT = 65 GeV/c

Four true particles: $\pi^+, \pi^-, \pi^0, K_L^0$

Switch to ECAL (η,ϕ) View

Switch to HCAL (η,ϕ) View

Track-Cluster Link ECal

ECal-HCal Cluster Link

Tracker-Cluster Link HCal

Particle Identification

List of reconstructed particles: {}

Particle Identification

List of reconstructed particles: { $\mathbf{\gamma}, \mathbf{\gamma}, \mathbf{\gamma}, \pi^+, \pi^-$ }

Simple example, nevertheless...

• The Particle Flow Algorithm scales to large particle multiplicities

 Analysis of leading jet from an allhadronic ttbar simulated event:

articles	#0 #1 #2	PDG code:130, PDG code:211, PDG code:211,	<pre>p/pt/eta/phi: 20.3845 p/pt/eta/phi: 17.2954 p/pt/eta/phi: 11.453 </pre>	16.7688 -0.645422 15.0452 -0.540329 9.82512 -0.567975	1.49343 1.45624 1.4245
б С	#3	PDG code:22,	p/pt/eta/ph1: 7.75683	6.52999 -0.603777	1.40032
	#4	PDG code:22,	p/pt/eta/phi: 7.26097	6.17551 -0.584549	1.42736
ž	#5	PDG code:22,	p/pt/eta/phi: 6.56173	5.52903 -0.602059	1.39252
	#6	PDG code:2212,	p/pt/eta/phi: 5.69095	5.14257 -0.457804	1.12381
Reco Particles	#0 #1 #2 #3 #4 #5	PFCandidate type: 5 PFCandidate type: 1 PFCandidate type: 1 PFCandidate type: 4 PFCandidate type: 4 PFCandidate type: 1	E/pT/eta/phi 31.929 E/pT/eta/phi 17.237 E/pT/eta/phi 11.540 E/pT/eta/phi 9.684 E/pT/eta/phi 6.663 E/pT/eta/phi 5.720	$\begin{array}{rrrr} 26.176 & -0.651 \\ 14.994 & -0.540 \\ 9.900 & -0.568 \\ 8.195 & -0.594 \\ 5.602 & -0.606 \\ 5.170 & -0.457 \end{array}$	1.493, 1.456, 1.425, 1.420, 1.388, 1.124,

JET SUBSTRUCTURE TECHNIQUES

New Field: Jet Substructure Techniques

- Qualitatively different quarks/gluons produce different jet topologies
 - Different radiation patterns & lifetimes
 - Can use topologies to discriminate

- Jets can also form from hadronic decays of high-p_T heavy particles
 - W/Z \rightarrow qq, H \rightarrow bb, t \rightarrow Wb \rightarrow qqb
 - By looking at these patterns we can gain useful information about the process in the event
 - Can be used to identify new physics signatures

Historical Perspective

- Identifying SM ttbar events historically done by associating one object to each final state decay product
 - Combine objects to reconstruct each top quark
 - Combinatorics can become unwieldy
 - 6+ jets in all-hadronic decay mode!

Historical Perspective

Hadronic Final States

- Large amount of acceptance can be gained from hadronic channels
- These merged decays can be used in other cases as well
 - W, Z, Higgs bosons

Jet Mass

- Computed by adding up constituent particle 4-vectors and computing the mass
- Choose R = 0.8 for heavy object reconstruction
 - Merged W/Z at $p_T \sim 200 \text{ GeV}$
 - Merged top at pT ~400 GeV

Jet Grooming

- Some discrimination obtained when using this 'raw' jet mass
- We can do better by looking inside the jet at the individual constituents
- Using jet grooming algorithms can improve the discrimination between QCD and top quark jets
- Basic idea: remove soft and wide-angle radiation from within the jet
 - Decluster Iteratively using smaller R
 - Merged top quarks can be identified with a window around the top quark mass

Dramatically improves the separation of QCD and top quark jets

Topological Algorithms

- We know how many final state objects to expect from the decay of different heavy objects
- Can look inside the jet for the expected substructure
 - Top decays \rightarrow 3 subjets
 - W/Z/H decays \rightarrow 2 subjets
- A quantity called N-subjettiness is a measure of how consistent a jet is with a hypothesized number of subjets
 - Low $\tau_N \rightarrow$ consistent with N (or fewer) subjets
 - Ratios used for additional discrimination

$$\tau_N = \frac{1}{\sum_i p_{T,i} \cdot R} \sum_i p_{T,i} \cdot \min(\Delta R_{1,i}, \Delta R_{2,i}, \dots, \Delta R_{N,i})$$

Combining all Information

- Ratios used for discrimination
 - $-\tau 3 / \tau 2$ for top quark jets
 - $-\tau 2 / \tau 1$ for W/Z/H jets
- Provides additional power when used in conjunction with the groomed jet mass

- The algorithms provide mutual information that increases performance
 - Choice of combination used for top quark identification in 13 TeV analyses: Soft-drop mass + Nsubjettiness (+ b-tagging)

Beyond Hadronic Top Decays

- Similar developments for other boosted heavy object identification
- Higgs tagging
 - Look for massive jets with 2
 b-tagged subjets

- W/Z tagging
 - Use $\tau 2 / \tau 1$ for 2-prong decay mode
 - Single-jet reconstruction more efficient at high pT

- Leptonic top quark decays
 - Non-isolated leptons

Wier

Cecilia E. Gerber (UIC) – CLASHEP2019

observables from SV and b-tagging observ tracks associated to the fat-jet each sub-jet observables from SV and tracks associated to each τ -axis

THE PHYSICS OF HADRON COLLISIONS

Hadronic Cross Sections

PROS

- Wide variety of processes produced
 - Enables rich physics program
 - Model-independent searches possible
 - Do not need theory to tell us what to look for

CONS

- Production Cross Sections span 12-13 orders of magnitude
 - Collision rate overwhelmed by mundane processes
 - Background discrimination and modeling crucial

Background

- Two types
 - Instrumental (fake)
 - Detector Malfunction
 - Object Misidentification
 - Physics (irreducible)
 - Higher rate process with identical final states than our signal
- Two options
 - Reduce to negligible level
 - Define "control regions" that are dominated by each of the main backgrounds & extract the signal performing simultaneous fits on both the signal and background dominated regions

What do we want to measure?

- Hadron Colliders are Discovery Machines
 - W/Z @ SpS in 1983
 - ttbar @ Tevatron in 1995
 - Higgs @ LHC in 2012
- Rate of a given process
 - Total Cross Sections
 - Differential Cross Sections
- Particle Properties
 - Mass, Width, Spin, Couplings...
- Search for New Physics
 - Model-specific
 - Model-independent
 - Infer from deviations from precision measurements of SM predictions

Recipe to measure a cross section

Differential cross section

Worry about the shape (particularly steeply falling distribution) and finite resolution:

Differential cross sections typically "un-smeared" to compare with predictions

Mass and other Particle Properties

Precision measurement ⇒ maximize statistical significance + minimize systematic uncertainties (jet energy scale, signal/background modeling)

Main mass extraction techniques:

- Template methods: typically, one mass per event from kinematic fit, compare data to MC templates
- Dynamical methods: event by event weights according to quality of agreement with signal and background differential cross-sections

$$\mathbf{P}(\mathbf{x};\mathbf{m}_{top}) = \frac{1}{\sigma} \int \mathbf{d}^{n} \sigma(\mathbf{y};\mathbf{m}_{top}) d\mathbf{q}_{1} d\mathbf{q}_{2} \mathbf{f}(\mathbf{q}_{1}) \mathbf{f}(\mathbf{q}_{2}) \mathbf{W}(\mathbf{x} \mid \mathbf{y})$$

PDF's

differential cross-section (LO matrix element)

Transfer function: mapping from parton level variables (y) to reconstructed level variables (x)

Simplest Search: Resonance Particles

- Hadrons with mean lives of ~10⁻⁸-10⁻¹⁰s can travel a few mm at the speed of light before decaying
- Can easily identify each particle's decay product and determine the particle mass and how long it lived

- Particles with lifetime ~10⁻²³ s
 travel less than the nuclear diameter
 - By measuring the energy and momenta of the decay products, we can calculate

$$x = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 c^2}$$

• x will give the mass of the parent particle or a continuous range of values in case of prompt production

Invariant Masses

TOMORROW: DOWN THE SM LADDER

QCD W and Z Bosons Top Quarks Higgs Bosons

MANY THANKS TO EVERYONE WHO CONTRIBUTED MATERIAL! (KNOWINGLY OR NOT ⓒ)

Special Thanks to Richard Cavanaugh & Justin Pilot

Electron-hole pairs drift

- Charges drift under the influence of the E and B fields
 - Lorentz angle = angle of charge drift relative to the E field
 - Drift direction offset the same for positive and negative

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

