QCD

Daniel de Florian ICAS - UNSAM Argentina

UNIVERSIDAD NACIONAL DE SAN MARTÍN

Recap of first lecture

OColor "explains" hadron spectrum :charge of QCD
OQCD Lagrangian derived from gauge principle with non-abelian group $\mathrm{SU}(3)$: Feynman rules for perturbative calculations

OThere are UV divergences dealt by renormalization : as a result running coupling constant

OTwo faces of QCD : asymptotically free and consistent with confinement

OThere are also IR divergences that cancel when adding real and virtual contributions

OJet algorithm is relevant to define IR safe observables
OQCD at work in e+e- : test the nature of $\mathrm{SU}(3) \mathrm{OK}$!

Outline of the lecture 2

\% Deep Inelastic Scattering
\& Parton Model
\& Scaling Violations and Evolution
$\%$ Factorization
\& Parton Distribution Functions

Deep inelastic scattering

$$
\begin{aligned}
s=(P+k)^{2} & \text { cms energy }^{2} \\
Q^{2}=-\left(k-k^{\prime}\right)^{2} & \text { momentum transfer }{ }^{2} \\
x=Q^{2} / 2(P \cdot q) & \text { scaling variable } \\
\nu=(P \cdot q) / M=E-E^{\prime} & \text { energy loss } \\
y=(P \cdot q) /(P \cdot k)=1-E^{\prime} / E & \text { rel. energy loss } \\
W^{2}=(P+q)^{2}=M^{2}+\frac{1-x}{x} Q^{2} & \text { recoil mass }
\end{aligned}
$$

\star Photon virtuality : transverse resolution at which it probes proton structure (quantum wavelength) $\lambda \sim 1 / Q$
large virtuality \sim better resolution
"Deep Inelastic" $\quad Q, W \gg M$
Large virtuality and recoil mass (inelastic)

One example at HERA e@27.5 GeV x p@920 GeV
(Hil)

$$
\mathrm{Q}^{2}=25030 \mathrm{GeV}^{2} ; \quad \mathrm{y}=0.56 ; \quad \mathrm{x}=0.50
$$

Deep inelastic scattering

$$
\begin{aligned}
& e p \rightarrow e X \\
& Q^{2}=-q^{2} \quad x=\frac{Q^{2}}{2 p \cdot q}
\end{aligned}
$$

If $Q^{2}<M_{Z}^{2}$ the cross section is dominated by one-photon exchange

$$
\begin{gathered}
k_{0}^{\prime} \frac{d \sigma}{d^{3} k^{\prime}}=\frac{1}{k \cdot p}\left(\frac{\alpha}{q^{2}}\right)^{2} L^{\mu \nu} W_{\mu \nu} \\
\text { Leptonic tensor: } \\
\text { computable QED }
\end{gathered}
$$

$$
L^{\mu \nu}=\frac{1}{4} \operatorname{tr}\left[\not k \gamma^{\mu} \not k^{\prime} \gamma^{\nu}\right]=k^{\mu} k^{\prime \nu}+k^{\prime \mu} k^{\nu}-g^{\mu \nu} k \cdot k^{\prime}
$$

Hadronic tensor can not be computed perturbatively : involves proton

$$
W_{\mu \nu}=\frac{1}{2 \pi} \int d^{4} y e^{i q y}\langle p| J_{\mu}(y) J_{\nu}(0)|p\rangle
$$

We can construct the most general tensor: parameterized by several structures but there are restrictions from parity, current conservation

$$
\partial_{\mu} J^{\mu}=0 \quad q_{\mu} W^{\mu \nu}=q_{\nu} W^{\mu \nu}=0
$$

Only two structures survive (photon exchange, no spin)
$=F_{1}\left(\frac{q_{\mu} q_{\nu}}{q^{2}}-g_{\mu \nu}\right)+F_{2} \frac{1}{p \cdot q}\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)$
Structure functions $\quad F_{i}\left(x, Q^{2}\right)$
Structure functions contain information on proton structure

Parton Model

Proton made up of pointlike particles : partons
\star Photon virtuality sets resolution $\quad \lambda \sim 1 / Q$
\star Photon-quark Interaction
$t_{\text {hard }} \sim 1 / Q$
^ Interaction between partons
$t \sim 1 / \Lambda_{Q C D}$

As $Q \gg \Lambda_{Q C D}$
During "hard interaction", partons don't have time to interact among them, behave as if they were free (snapshot of the proton)

Scattering is incoherent on the single partons

Hadron is a jet of partons moving in the same direction and sharing the momentum and energy (fraction z) Infinite momentum frame

(Naive) Parton Model

Factorization

$$
\sigma(e p \rightarrow e X)=\int_{0}^{1} d z \sum_{i}^{\substack{\text { large } \\ \text { distances }}} f_{i}(z) \hat{\sigma}\left(e q_{i} \rightarrow e X\right)
$$

I Probability to find parton " i " with momentum fraction z in proton ■ $\hat{\sigma}=$ "partonic" cross section \longrightarrow computed perturbatively

- Parton distributions (PDF) are universal : the same for any process

Universality is the key, we can not compute them perturbatively (no way to compute it precisely enough even with other methods) but we can extract it from known processes and use if for predictions

Factorization (Naive parton model)

At this order separation between hard and soft component is unambiguous. Things become much more complicated when higher order corrections are accounted for.

At lowest order

What happens if photon interacts with pointlike particle?

$$
\left(p^{\prime}\right)^{2}=(z p+q)^{2}=2 z p \cdot q-Q^{2}=0 \quad \rightarrow \quad z=x
$$

only couples to quark with mom. fraction x !

$$
F_{2}^{\text {pointlike }} \sim e_{q}^{2} x \delta(z-x) \quad \text { no } Q: \text { scaling! }
$$

- Point-like interaction \longrightarrow scaling (and "direct" access to x)

$$
F_{2}\left(x, \not \mathscr{A}^{2}\right)=\sum_{q} e_{q}^{2} x f_{q}(x)
$$

Quarks are fermions \longrightarrow no coupling to longitudinal photons, only transverse polarization (Callan-Gross relation)

$$
F_{L}\left(x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right)=0!
$$

If quarks were scalars $F_{1}=0$

Cross section at lowest order: only F_{2}

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{2}(x)-y^{2} \text { 友 }(x)\right]
$$

Scaling (Bjorken I968, SLAC data)

Proton structure function (with electron scattering) is

$$
F_{2}^{e p} / x=\frac{4}{9} u(x)+\frac{1}{9} d(x)+\frac{4}{9} \bar{u}(x)+\frac{1}{9} \bar{d}(x)+\frac{1}{9} s(x)+\frac{1}{9} \bar{s}(x)+\frac{4}{9} c(x)+\frac{4}{9} \bar{c}(x)
$$

Same applies for neutron but with "neutron parton distributions"
Actually, can relate neutron to proton PDFs using isospin symmetry

$$
\begin{aligned}
& f_{u / n}(x)=f_{d / p}(x) \equiv d(x) \\
& f_{\bar{u} / n}(x)=f_{\bar{d} / p}(x) \equiv \bar{d}(x) \\
& f_{d / n}(x)=f_{u / p}(x) \equiv u(x) \\
& f_{s / n}(x)=f_{s / p}(x) \equiv s(x)
\end{aligned}
$$

($\mathrm{p} \longleftrightarrow \mathrm{n}$)
(usually better than \% accuracy)

$$
F_{2}^{e n} / x=\frac{1}{9} u(x)+\frac{4}{9} d(x)+\frac{1}{9} \bar{u}(x)+\frac{4}{9} \bar{d}(x)+\frac{1}{9} s(x)+\frac{1}{9} \bar{s}(x)+\frac{4}{9} c(x)+\frac{4}{9} \bar{c}(x)
$$

In real life one measures deuteron $(p+n)$ structure functions

But ep/en DIS does not provide access to $q-\bar{q}$
Photon interacts the same way with quarks and antiquarks $\sim e_{q}^{2}$

$$
F_{2}^{e p} / x=\frac{4}{9} u(x)+\frac{1}{9} d(x)+\frac{4}{9} \bar{u}(x)+\frac{1}{9} \bar{d}(x)+\frac{1}{9} s(x)+\frac{1}{9} \bar{s}(x)+\frac{4}{9} c(x)+\frac{4}{9} \bar{c}(x)
$$

W's interact differently with quarks and antiquarks
For weak interactions: parity violation, extra term in hadronic tensor

$$
\begin{gathered}
\leadsto F_{3} \\
\frac{\left.d^{2} \sigma()_{\nu}^{\nu}+p\right)}{d x d Q^{2}}=\frac{G_{F}^{2}}{4 \pi x}\left(\frac{M_{w}^{2}}{Q^{2}+M_{w}^{2}}\right)^{2}\left[\left(1+(1-y)^{2}\right) F_{2}^{\nu}-y^{2} F_{L}^{\nu} \pm\left(1-(1-y)^{2}\right) x F_{3}^{\nu}\right]
\end{gathered}
$$

$$
\begin{array}{rlr}
F_{2}^{\nu p} / x & =2 d(x)+2 \bar{u}(x)+2 s(x)+2 \bar{c}(x) & W^{+} \\
F_{3}^{\nu p} & =2 d(x)-2 \bar{u}(x)+2 s(x)-2 \bar{c}(x) & \\
F_{2}^{\bar{\nu}_{p}} / x & =2 u(x)+2 \bar{d}(x)+2 c(x)+2 \bar{s}(x) & \\
F_{3}^{\bar{\nu} p} & =2 u(x)-2 \bar{d}(x)+2 c(x)-2 \bar{s}(x) & W^{-}
\end{array}
$$

Measuring several DIS cross-sections

Extraction of quark distributions possible

What does it mean that proton has two up and one down quark?
Valence distributions

$$
\begin{aligned}
u_{v}(x) & =u(x)-\bar{u}(x) \\
d_{v}(x) & =d(x)-\bar{d}(x)
\end{aligned}
$$

Sum Rules

$$
\int_{0}^{1} d x u_{v}(x)=2
$$

$$
\begin{array}{ll}
\int_{0}^{1} d x d_{v}(x)=1 & \int_{0}^{1} d x[u(x)+\bar{u}(x)]=\infty \\
s(x) \neq \bar{s}(x) \quad & \int_{0}^{1} d x s_{v}(x)=0
\end{array}
$$

Notice that number of quarks plus antiquarks can be infinity!
Momentum of the proton distributed among components

$$
\int_{0}^{1} d x \sum_{q}[x q(x)+x \bar{q}(x)]+\int_{0}^{1} d x x g(x)=1
$$

Parton Distributions

How do they look like?

- Vanish when $x \rightarrow 1$
- "Quark" peak at $\quad x \sim 1 / 3$
- Gluon and "sea" rise as $x \rightarrow 0$ radiation of soft particles

Notice gluon divided by $10!$: gluon distribution is huge in kinematical ${ }^{\mathbf{X}}$ region relevant for LHC

LHC is a "gluon Collider"

QCD corrections and scaling violation

Does simple parton model survive at higher orders?
Quarks can radiate gluons : real corrections

Divergences again ... $\quad \frac{-1}{(p-k)^{2}}=\frac{1}{2 p \cdot k}=\frac{1}{2 E_{q} E_{g}(1-\cos \theta)}$
when gluon has no transverse momentum $\quad k_{T} \sim E_{g} \sin \theta \rightarrow 0$

Will virtual contributions solve the problem again?
No (not all of them)!!!

Virtual and Real contribute to different kinematics

virtual

$$
\left(p^{\prime}\right)^{2}=(z p+q)^{2}=2 z p \cdot q-Q^{2}=0 \quad \rightarrow \quad z=x
$$

real

$$
\left(p^{\prime}\right)^{2}=(z p+q-k)^{2} \sim 2 z y p \cdot q-Q^{2}=0 \quad \rightarrow \quad z y=x
$$

Sum of real + virtual: soft singularities cancelled $(y=I)$
But for other values of y, singularities (collinear) remain ...

Why cancellation does not occur?

Feynman diagrams are the same as in $e^{+} e^{-} \rightarrow$ hadrons
rotation!

KLN: Infrared singularities in massless theory cancel out after a sum over degenerate (initial and final) states. But here we are not adding over initial states, we assume "identified and free" colored parton attached to proton with corresponding pdf

Cross section with incoming parton is collinear unsafe

Collinear (IR) configuration corresponds to non-perturbative regime

Parton model: separation between soft and hard physics

Define "hardness" of contributions by using some kinematical variable (virtuality of quark/ transverse momentum of gluon)

Introduce new (ad-hoc) factorization scale to separate hard from soft μ_{F}

Real contribution

$P_{q q}(y)$ Prob.collinear emission

Regularize the divergence with a cut-off

$$
\mu_{0}^{2} \lesssim k_{T}^{2}<Q^{2}
$$

$$
F_{2}^{c o r}\left(x, Q^{2}\right)=\sum_{q} e_{q}^{2} x \frac{\alpha_{s}}{2 \pi} \log \left(\frac{Q^{2}}{\mu_{0}^{2}}\right) \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}\right)+\text { finite }
$$

First thing to notice: scaling broken due to gluon radiation

$$
\begin{gathered}
F_{2}^{c o r}\left(x, Q^{2}\right)=\sum_{q} e_{q}^{2} x \frac{\alpha_{s}}{2 \pi} \log \underbrace{\left(\frac{Q^{2}}{\mu_{0}^{2}}\right) \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}\right)+\text { finite }} \\
\log \left(\frac{Q^{2}}{\mu_{0}^{2}}\right)=\log \left(\frac{\mu_{F}^{2}}{\mu_{0}^{2}}\right)+\log \left(\frac{Q^{2}}{\mu_{F}^{2}}\right)
\end{gathered}
$$

soft (and divergent) to PDF
Hard (and finite)

Factorization (in pdfs) IR equivalent to UV renormalization

$$
q\left(x, \mu_{F}^{2}\right)=q(x)+\frac{\alpha_{s}}{2 \pi} \log \left(\frac{\mu_{F}^{2}}{\mu_{0}^{2}}\right) \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}\right)
$$

Factorization scale unphysical, typically chosen as $\mu_{F}=\mu_{R}=Q$
fixed order calculation shows "spurious" factorization scale dependence

Scaling broken, but we can predict dependence on virtuality perturbatively (not on x)

$$
q\left(x, \mu_{F}^{2}\right)=q(x)+\frac{\alpha_{s}}{2 \pi} \log \left(\frac{\mu_{F}^{2}}{\mu_{0}^{2}}\right) \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}\right)
$$

Altarelli-Parisi equation (RGE like: resummation of collinear logs)
DGLAP : Dokshitzer, Grivov, Lipatov, Altarelli, Parisi
$\frac{\partial q\left(x, \mu_{F}^{2}\right)}{\partial \log \left(\mu_{F}^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}, \mu_{F}^{2}\right)$

Increase "resolution" scale: resolve more details of "partonic structure"

To have the complete picture we have to account for contributions initiated by gluons in the proton

$$
\begin{aligned}
& \frac{\partial q\left(x, \mu_{F}^{2}\right)}{\partial \log \left(\mu_{F}^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}, \mu_{F}^{2}\right)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{q g}(y) g\left(\frac{x}{y}, \mu_{F}^{2}\right) \\
& \begin{array}{l}
\text { Probabilistic } \\
\text { interpretation }
\end{array} x / y \\
&
\end{aligned}
$$

Similarly for gluon distribution

$$
\frac{\partial g\left(x, \mu_{F}^{2}\right)}{\partial \log \left(\mu_{F}^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{g q}(y) \sum_{q} q\left(\frac{x}{y}, \mu_{F}^{2}\right)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{g g}(y) g\left(\frac{x}{y}, \mu_{F}^{2}\right)
$$

Not trivial to solve AP equations in x-space due to its nature and convolutions. But much simpler with moments

$$
\frac{\partial q\left(x, \mu_{F}^{2}\right)}{\partial \log \left(\mu_{F}^{2}\right)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q\left(\frac{x}{y}, \mu_{F}^{2}\right)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y} P_{q g}(y) g\left(\frac{x}{y}, \mu_{F}^{2}\right)
$$

Mellin moments

$$
F_{n} \equiv \int_{0}^{1} \frac{\mathrm{~d} x}{x} x^{n} F(x)
$$

Mellin space : convolutions turn into products $\int f \otimes g \rightarrow f^{n} \times g^{n}$

$$
\frac{\partial q\left(N, \mu_{F}^{2}\right)}{\partial \log \left(\mu_{F}^{2}\right)}=\frac{\alpha_{s}}{2 \pi} P_{q q}(N) q\left(N, \mu_{F}^{2}\right)+\frac{\alpha_{s}}{2 \pi} P_{q g}(N) g\left(N, \mu_{F}^{2}\right)
$$

Convenient to split into non-singlet (valence-like) and singlet
non-singlet

$$
\begin{aligned}
& V(x)=\sum_{i} f_{i}(x)-\sum_{\bar{\imath}} f_{\bar{\imath}}(x) \\
& \Sigma(x)=\sum_{{ }_{5}}{ }_{i} \\
& f_{i}(x)+\sum_{\bar{\imath}} f_{\bar{\imath}}(x)
\end{aligned}
$$

singlet

Evolution equations become:

$$
\begin{aligned}
\frac{d V^{(n)}}{d t} & =\frac{\alpha_{s}}{2 \pi} P_{q q}^{(n)} V^{(n)} \\
\frac{d \Sigma^{(n)}}{d t} & =\frac{\alpha_{s}}{2 \pi}\left[P_{q q}^{(n)} \Sigma^{(n)}+2 n_{f} P_{q g}^{(n)} f_{g}^{(n)}\right] \\
\frac{d f_{g}^{(n)}}{d t} & =\frac{\alpha_{s}}{2 \pi}\left[P_{g q}^{(n)} \Sigma^{(n)}+P_{g g}^{(n)} f_{g}^{(n)}\right]
\end{aligned}
$$

They have analytical solution in Mellin space, specially simpler for non-singlet, driven by coupling constant and anomalous dimensions

$$
\text { non-singlet } q_{N S}\left(N, Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{\alpha_{s}\left(Q^{2}\right)}\right]^{-2 P_{q q}(N) / \beta_{0}} q_{N S}\left(N, Q_{0}^{2}\right)
$$

Evolution performed in Mellin space and the inverted back to x

$$
F(x)=\frac{1}{2 \pi i} \int_{c-i \varrho 8}^{c+i \infty} \mathrm{~d} n x^{-n} F_{n}
$$

- Valence Quark number conservation is also simple in Mellin space

First moment

$$
V^{(1)}=\int_{0}^{1} d x V(x)
$$

Valence Number conservation $\frac{d V^{(1)}}{d t} \equiv 0=\frac{\alpha_{s}}{2 \pi} P_{q q}^{(1)} V^{(1)}=0$

- Helps to fix virtual contribution at $z=1$

$$
\begin{aligned}
& P_{q q}^{(0)}=C_{F} \frac{1+z^{2}}{1-z} \\
& "+C_{F}\left[\frac{1+z^{2}}{(1-z)_{+}}+A \delta(1-z)\right] \\
& P_{q q}^{(0)}(z)=C_{F}\left[\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2} \delta(1-z)\right]
\end{aligned}
$$

- Momentum conservation is also simple in Mellin space

$$
\int_{0}^{1} d x x\left[\sum_{i, \bar{i}} f_{i}(x)+f_{g}(x)\right] \equiv \Sigma^{(2)}+f_{g}^{(2)}=1
$$

- Due to quark and gluon evolution two conditions must be fulfilled for the second moment of the splitting functions

$$
\begin{aligned}
P_{q q}^{(2)}+P_{g q}^{(2)} & =0 \\
P_{g g}^{(2)}+2 n_{f} P_{q g}^{(2)} & =0
\end{aligned}
$$

First one confirms result from fermion number in $q q$ kernel
Second one used to fix $z=1$ behavior of $g g$ kernel
$\underbrace{q}_{q}+\underbrace{q}_{q}$

Altarelli and Parisi, NPBI26 (I977) 298

$$
P_{q g}^{(0)}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right]
$$

Scaling violations are:

- Positive at small x (more partons with smaller energy)
- Slightly negative at large x

Main effect of increase in Q^{2} is shift of partons from larger to smaller x

Resolve shorter distances in the proton: quark with fraction x can be resolved as a qg pair (quark with smaller momentum)

HERA F_{2}

AP Evolution equations

 allow to predict the Q^{2} dependence of DIS dataAnd very well!

Region studied to find scaling!

pQCD vocabulary: LO-NLO-NNLO-...

Improved (factorized) Parton Model

$$
\sigma(e p \rightarrow e X)=\int_{0}^{1} d z \sum_{i=q, \bar{q}, g} f_{i}\left(z, \mu_{F}^{2}\right) \hat{\sigma}^{\text {hard }}(e i \rightarrow e X)
$$

LO Leading Order: Born partonic cross-section + LO evolution of pdfs

NLO Next-to-Leading Order: Born $+\mathcal{O}\left(\alpha_{s}\right)$ (finite) cross-section + NLO evolution of pdfs

$$
\begin{aligned}
& F_{2}\left(x, Q^{2}\right)=\sum_{q} e_{q}^{2} x f_{q}\left(x, Q^{2}\right)+\alpha_{s} \sum_{q} e_{q}^{2} \int_{x}^{1} \frac{d y}{y} C_{q}^{(1)}(y) f_{q}\left(x / y, Q^{2}\right) \\
& +\alpha_{s} \sum_{q} e_{q}^{2} \int_{x}^{1} \frac{d y}{y} C_{g}^{(1)}(y) f_{g}\left(x / y, Q^{2}\right)
\end{aligned}
$$

NNLO Next-to-Next-to-Leading Order: ... $+\mathcal{O}\left(\alpha_{s}^{2}\right)$ (finite) cross-section + NNLO evolution of pdfs

$$
+\alpha_{s}^{2} C_{i}^{(2)}(y)
$$

Higher order Altarelli-Parisi kernels known (NNLO) three-loop

Moch,Vermaseren, Vogt (2004) and working on the 4-loop now!!
9607 (3-loop) Feynman diagrams: 20 man-year work !!

Factorization Formula

non-perturbative parton distributions
$d \sigma=\sum_{a b} \int d x_{a} \int d x_{b} f_{a}\left(x_{a}, \mu_{F}^{2}\right) f_{b}\left(x_{b}, \mu_{F}^{2}\right) \times d \hat{\sigma}_{a b}\left(x_{a}, x_{b}, Q^{2}, \alpha_{s}\left(\mu_{R}^{2}\right)\right)+\mathcal{O}\left(\left(\frac{\Lambda}{Q}\right)^{m}\right)$
perturbative partonic cross-section

Partonic cross-section:

 expansion in $\alpha_{s}\left(\mu_{R}^{2}\right) \ll 1$$$
d \hat{\sigma}=\alpha_{s}^{n} d \hat{\sigma}^{(0)}+\alpha_{s}^{n+1} d \hat{\sigma}^{(1)}+\ldots
$$

(next lecture)

Expression relies on factorization theorem : HT, mass corrections, etc. not trivial

Need precision for both perturbative and non-perturbative components!

Status of PDFs

Parton distributions are determined by performing global fits:
\checkmark Parametrize distributions at input scale $Q_{0}=1-4 \mathrm{GeV}$

$$
x f\left(x, Q_{0}^{2}\right)=A x^{\alpha}(1-x)^{\beta}(1+\epsilon \sqrt{x}+\gamma x+\ldots . .)
$$

\checkmark Impose sum rules (momentum)

$$
\int_{0}^{1} d x \sum_{q}\left[x q\left(x, Q_{0}^{2}\right)+x \bar{q}\left(x, Q_{0}^{2}\right)\right]+\int_{0}^{1} d x x g\left(x, Q_{0}^{2}\right)=1
$$

\checkmark Evolve PDF to physical scale and compute observable
\checkmark Compute χ^{2} and search for the best parameters

$$
\chi^{2}=\sum_{i=1}^{N} \frac{\left(T_{i}-E_{i}\right)^{2}}{\delta E_{i}^{2}}
$$

Several groups working on global fits of pdfs

PDFs obtained by global fit : X^{2} minimization

result : best fit

PDF fit

Engineering Flowchart

 DOES IT MOVE?

Apart from inclusive DIS, some relevant processes are

Jets and charm production in DIS: complementary information from inclusive DIS

Sensitive to $g(x), c(x)$

And in hadronic collisions

Jet production : sensitive to many channels gluons enter at lowest order

Transverse momentum q_{T} and rapigitity distributions $y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$

More in hadronic collisions

Drell-Yan: main production mechanism for Gauge bosons (lepton pair)

Sensitive to $q\left(x_{1}\right) \bar{q}\left(x_{2}\right)$

Prompt-Photons: "clean" in principle, but some exp/th issues for fixed target

Sensitive to $q\left(x_{1}\right) g\left(x_{2}\right)$
Not much used...

- Include all observables where pQCD is under control : each one helps to constrain a combination of pdfs at certain kinematics

Fixed target :

Process	Subprocess	Partons	x range
$\ell^{ \pm}\{p, n\} \rightarrow \ell^{ \pm} X$	$\gamma^{*} q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$
$\ell^{ \pm} n / p \rightarrow \ell^{ \pm} X$	$\gamma^{*} d / u \rightarrow d / u$	d / u	$x \gtrsim 0.01$

Ip and DY

HERA

Tevatron

$p p \rightarrow \mu^{+} \mu^{-} X$	$u \bar{u}, d \bar{d} \rightarrow \gamma^{*}$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$p n / p p \rightarrow \mu^{+} \mu^{-} X$	$(u \bar{d}) /(u \bar{u}) \rightarrow \gamma^{*}$	\bar{d} / \bar{u}	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \rightarrow \mu^{-}\left(\mu^{+}\right) X$	$W^{*} q \rightarrow q^{\prime}$	q, \bar{q}	$0.01 \lesssim x \lesssim 0.5$
$\nu N \rightarrow \mu^{-} \mu^{+} X$	$W^{*} s \rightarrow c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \rightarrow \mu^{+} \mu^{-} X$	$W^{*} \bar{s} \rightarrow \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{ \pm} p \rightarrow e^{ \pm} X$	$\gamma^{*} q \rightarrow q$	g, q, \bar{q}	$0.0001 \lesssim x \lesssim 0.1$
$e^{+} p \rightarrow \bar{\nu} X$	$W^{+}\{d, s\} \rightarrow\{u, c\}$	d, s	$x \lesssim 0.01$
$e^{ \pm} p \rightarrow e^{ \pm} c \bar{c} X$	$\gamma^{*} c \rightarrow c, \gamma^{*} g \rightarrow c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{ \pm} p \rightarrow$ jet $+X$	$\gamma^{*} g \rightarrow q \bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p \bar{p} \rightarrow j e t+X$	$g g, q g, q q \rightarrow 2 j$	g, q	$0.01 \lesssim x \lesssim 0.5$
$p \bar{p} \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} \nu\right) X$	$u d \rightarrow W, \bar{u} \bar{d} \rightarrow W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p \bar{p} \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right) X$	$u u, d d \rightarrow Z$	d	$x \gtrsim 0.05$

MSTW

PDFs

Main ingredient of any high-energy observable in Hadronic Colliders

Some issues: I\% inspiration plus 99\% transpiration.. Einstein
-Selection of data
which observables (no prompt photon)
"incompatible" data sets (W lepton asymmetries)
open bins/combined data (Hera)
-Weights for some experiments
enhance the relevance of some data set enhance some "parton distribution" reduce effect of inconsistent data sets
-"Aesthetic" requirements unphysical behavior of pdfs at $x=0$ and 1 : penalty terms

HQ treatment and masses

- Theoretical issues Parametrization of pdfs

Selection of factorization/renormalization scales TH improvements for some observables (resummation) Solution of evolution equations and precision (speed!) α_{s} from fit or external value? which value/uncertainty?
-Uncertainties
what is I sigma in a global fit? $\Delta \chi^{2}=$?

Traditional Uncertainties: Hessian approach

- Assume quadratic dependence on parameters around minimum

$$
\Delta \chi^{2}(a)=\chi^{2}-\chi_{0}^{2}=\sum_{i, j} H_{i j} \delta a_{i} \delta a_{j}+\cdots
$$

- Diag. to eigenvectors : optimized orthonormal basis near minimum

I per parameter

- Allow for some $\Delta \chi^{2}$ to define extreme sets (+/-) for each eigenvector: 2 full pdf sets $S_{k}^{ \pm}$for each eigenvector to compute uncertainties for each observable

$$
\Delta \mathcal{O}_{i}=\frac{1}{2}\left(\sum_{k=1}^{N_{\text {par }}}\left[\mathcal{O}_{i}\left(S_{k}^{+}\right)-\mathcal{O}_{i}\left(S_{k}^{-}\right)\right]^{2}\right)^{1 / 2}
$$

- Construct a set of MonteCarlo replicas of the original data set where the replicas fluctuate about central data
- Split data sets into training and validation sets
- Fit to the data replicas obtaining PDF replicas
- PDFs generated using a neural net to find the best fit. Eliminates largely dependence on parameterization. Still includes pre-processing factor to constrain kinematic limits

$$
f\left(x, \mu_{0}^{2}\right)=A x^{\alpha}(1-x)^{\beta} N N(x)
$$

- Statistical definition of mean value and standard deviation for observable

$$
N_{\mathrm{rep}}=100 \text { or } 1000
$$

$$
\langle\mathcal{F}[\{q\}]\rangle=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} \mathcal{F}\left[\left\{q^{(k)}\right\}\right] \quad{ }_{45}^{\sigma_{\mathcal{F}}}=\left(\frac{1}{N_{\text {rep }}-1} \sum_{k=1}^{N_{\text {rep }}}\left(\mathcal{F}\left[\left\{q^{(k)}\right\}\right]-\langle\mathcal{F}[\{q\}]\rangle\right)^{2}\right)^{1 / 2}
$$

PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc

set	H.O.	data	$\alpha_{s}\left(M_{z}\right)$ @NNLO	uncertainty	HQ
MMHTI4	NNLO	DIS+DY+Jets+LHC	0,118	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')
CTI4	NNLO	DIS+DY+Jets+LHC	0,118	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)
NNPDF 3	NNLO	DIS+DY+Jets+LHC	0,118	Monte Carlo	GM-VFN (FONLL)
ABM	NNLO	DIS+DY(f.t.)+DY- tT(LHC)	0,1 I32	Hessian	FFN BMSN
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	0,1124	Hessian	FFN (VFN massless)
HERA PDF	NNLO	only DIS HERA	0,1 I76	Hessian	GM-VFN (ACOT+TR')

(4) Parton Distribution Functions

Unpolarized Parton Distributions

Access the parton distribution code, on-line calculation and graphical display of the distributions, ffrom CTEQ, GRV, MRS and Alekhin.

CTEQ distributions, fortran code and grids
GRV distributions, fortran code and grids
MRST distributions, fortran code and grids, $\mathrm{C}++$ code
ALEKHIN distributions, fortran, C++ and Mathematica code, and grids
On-line Parton Distribution Calculator with Graphical Display.

- now includes PDF error calculations from MRST2001E and CTEQ6.

Public access to the ZEUS 2002 PDFs, ZEUS 2005 jet fit PDFs and H1 PDF 2000 sets.
J. Bluemlein, H. Boettcher and A.Guffanti - hep-ph/0607200 BBG06 NS

Polarized Parton Distributions
Currently available parametrizations:
E.Leader, A.V.Sidorov and D.B.Stamenov, Eur.Phys.J.C23 (2002) 479: LSS2001
E.Leader, A.V.Sidorov and D.B.Stamenov, Phys.Rev.D73 (2006) 034023: LSS2005
M. Glueck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D53 (1996) 4775: GRSV
M. Glueck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D63 (2001) 094005: GRSV2000
T. Gehrmann and W.J. Stirling, Phys. Rev. D53 (1996) 6100: GS
J. Bluemlein and H. Boettcher - Nucl.Phys.B636(2002)225: BB

Asymmetry Analysis Collaboration - M. Hirai et al- Phys. Rev. D69 (2004) 054021: AAC
D. de Florian and R. Sassot, Phys. Rev. D62 (2000) 094025: DS2000
D. de Florian, G.A. Navarro and R. Sassot, Phys. Rev. D71 (2005) 094018: DNS2005

Diffractive Parton Distributions

A.D.Martin, M.G.Ryskin and G.Watt: MRW2006.

Pion Parton Distributions

(4) On-lime PAtting and Calculation.

- Parton Distributions:

$Q * * 2=100$
___up

Using the form below you can calculate, in real time, values of $x f\left(x, Q^{\wedge} 2\right)$ for any of the PDFs from the groups CTEQ, MRS, GRV and Alekhin. You can also generate and compare plots of xfæx at any $Q^{\wedge} 2$ for up to 4 differentparton types or PDFs.

```
\(\mathbf{x m i n}=\hat{0.0001} \quad \mathbf{x m a x}=0.8 \quad\) xinc \(=0.01 \quad \mathbf{Q}^{* * 2}=100 \quad \mathbf{G e V} * * 2\)
select \(\operatorname{lin} x \bigcirc\) or \(\log x\)
select lin \(x\) or \(\log x f\) xfmin \(=0.0\) and \(\mathbf{x f m a x}=2.0\)
select either numbers \(\bigcirc\) or plot \(\odot\) or kumac file \(\bigcirc\)
```

1∇	up	\pm	MRST2004NLO		scale-factor	1.0
2 V	up	$+$	CTEQ6.1M		scale-factor	1.0
3 V	up	$\stackrel{+}{*}$	GRV98NLM		cale-factor	1.0
	up	*	MRST2002NLO		scale-factor	1.0

Make the Plot/Calculation Reset the Form

- Parton Distributions with Error Analyses:
$\mathbf{x m i n}=0.0001$ xmax $=0.8 \quad$ xinc $=0.01 \quad \operatorname{Scale}\left(\mathbf{Q}^{* *} \mathbf{2}\right)=100 \mathbf{G e V}^{* * 2}$
select $\operatorname{lin} \mathbf{x} \bigcirc$ or $\log \mathbf{x} \odot$ and $\mathbf{y m a x}(\mathbf{x f})$ value $=2.0$
select either plot \odot or kumac file \odot

Select below if you wish the comparison of another PDF set with the above (note: this optiontonly works for specific partons - not "all")
 10^{-1}

How do they look like?
MSTW 2008 NLO PDFs (68\% C.L.)

Main Issues

Heavy quark treatment : different TH approaches with some ad-hoc procedures

Not only affects HQ distributions but substantially modifies the gluon density
Coupling constant : affects evolution and evaluation of cross sections!

PDF4LHC recommendation
Now the 3 main sets agree on common coupling 0.118 ± 0.0015

At hadron colliders more than PDFs it is interesting to look at Luminosities for each channel

Continuous improvements:TH (NNLO), more data (LHC), coupling

QUARK-QUARK

2015
Quark-Quark, luminosity

GLUON-GLUON
Gluon-Gluon, luminosity

Still larger disagreement with "non-global" fits

$$
\mu_{F}^{2}=\hat{s}
$$

 much bigger differences for non-global pdfs!

LHC helps (and will help more)

- Precise LHC data needed for validation \& improvement

Still missing full Jet calculation at NNLO (on the way)

LHC parton kinematics

THE NEW PDF4LHC PRESCRIPTION

- PERFORM MONTE CARLO COMBINATION OF UNDERLYING PDF SETS
- SETS ENTERING THE COMBINATION MUST SATISFY COMMON REQUIREMENTS
- DELIVER A SINGLE COMBINED PDF SET THROUGH SUITABLE TOOLS
- A PDF4LHC15 PDF SET WILL BE RELEASED
- NLO AND NNLO GRIDS WILL BE AVAILABLE
- REPLICA/ERROR SETS FOR PDF UNCERTAINTY, SEPARATE UPPER AND LOWER SETS FOR α_{s} UNCERTAINTY;
$\alpha_{s}=0.118 \pm 0.002$ OR $\alpha_{s}=0.118 \pm 0.0015$ FOR NLO,
$\alpha_{s}=0.118 \pm 0.001$ OR $\alpha_{s}=0.118 \pm 0.0015$ FOR NNLO
- THREE VERSIONS (DIFFERENT DELIVERIES OF SAME PDF SET):
- PDF4LHC15_100 HESSIAN 100 when GAUSSIAN ACCURATE PREDICTION reguired (EXAmple: Higgs in gluon fusion signal strength)
- PDF4LHC15_30 Hessian30 when fast calculation needed (example: ACCEPTANCE)
- PDF4LHC15_MC MONTECARLO WHEN MC DESIRABLE OR NONGAUSSIAN EFFECTS IMPORTANT (EXAMPLE: SEARCHES)

PV: looks a bit too optimistic...

arXiv.org > hep-ph > arXiv:1603.08906
High Energy Physics - Fhenomenology

Recommendations for PDF usage in LHC predictions

A. Accardi, S. Alekhin, J. Blümlein, M.V. Garzelli, K. Lipka, W. Melnitchouk, S. Moch, R. Placakyte, J.F. Owens, E. Reya, N. Sato, A. Vogt, O. Zenaiev
(Submitted en 29 Mar 2016)
We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirtments for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currertly available PDF sets and use them to compute cress sections for a number of benchmark protesses, including Higgs boson production ingluon-gluon fusion at the LHC. We show that the differences is the predictions obtained with the various PDFs are due to partcular theory assumptions made in the fits of those POFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocared by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC

Recap of second lecture

ODIS provides the best scenario to study proton structure
OParton Model : scattering is an incoherent sum of partonic cross sections

OFactorization allows us to compute the partonic cross section perturbatively and at the same time implies that parton distributions are universal

OIR divergences appear again but do not cancel completely : must be factorized in parton distributions

OParton distributions are scale dependent. Evolution perturbatively determined by DGLAP equations
OPDFs are extracted by global analysis. Also statistical uncertainties are determined

OStill some issues in PDF extraction : uncertainties, coupling constant, but continuous improvements

