QCD

Daniel de Florian ICAS - UNSAM Argentina

UNIVERSIDAD NACIONAL DE SAN MARTÍN

Recap of second lecture

ODIS provides the best scenario to study proton structure
OParton Model : scattering is an incoherent sum of partonic cross sections

OFactorization allows us to compute the partonic cross section perturbatively and at the same time implies that parton distributions are universal

OIR divergences appear again but do not cancel completely : must be factorized in parton distributions
OParton distributions are scale dependent. Evolution perturbatively determined by DGLAP equations
OPDFs are extracted by global analysis. Also statistical uncertainties are determined

OStill some issues in PDF extraction : uncertainties, coupling constant, but continuous imprǫvements

The perturbative toolkit for precision at colliders State of the Art

Outline of the lecture 3

\mathscr{Q} QCD at Colliders
\& Why higher orders?
\% How to do NLO
\& Automated tools at NLO

QCD at Colliders

proton - (anti)proton cross sections

Most of the collisions correspond to soft physics: non-perturbative

Most interesting (new) physics involves large scales

Kinematics relevant in hadronic colliders
$p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right) \quad$ final state particle
$p^{\mu}=\left(m_{T} \cosh y, p_{T} \sin \phi, p_{T} \cos \phi, m_{T} \sinh y\right)$
Transverse mass $\quad m_{T}=\sqrt{p_{T}^{2}+m^{2}}$

$$
\begin{gathered}
\text { Rapidity } \\
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \\
E_{T}=E \sin \theta \\
\frac{d^{3} p}{E}=p_{T} d p_{T} d y d \phi
\end{gathered}
$$

Most interesting (new) physics involves large scales

Factorization of singularities in parton distributions exactly as in DIS

$$
\begin{array}{rl}
\sigma\left(p_{1}, p_{2}\right)=\sum_{a, b} \int_{0}^{1} d x_{1} \int_{0}^{1} & d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{a b}\left(x_{1} p_{1}, x_{2} p_{2}, \alpha_{s}\left(\mu_{R}^{2}\right), \mu_{R}^{2}, \mu_{F}^{2}\right)
\end{array}
$$

Two unphysical scales $\mu_{R}^{2} \sim \mu_{F}^{2} \sim_{s} Q^{2}$

LO : number of tools to compute tree level amplitudes
Fully automated calculations for very large multiplicities

MADGRAPH, HELAC-PHEGAS, ALPGEN, SHERPA, ComHep, COMIX,...

Pros of LO calculations
Fast (until recently the only option for many observables) Simpler to integrate calculation to parton showers Many tools available (tested!)

Cons of LO calculations
In most cases, not enough for precision physics : only qualitative Large scale dependence
No control on normalization (poor on shapes)
No Control on uncertainties

Why higher order corrections?

Why higher order corrections?

- Accurate Theoretical Predictions

 shape and normalization- Large Corrections : check PT

First example: Drell-Yan

$$
p p \rightarrow \mu^{+} \mu^{-}
$$

- K-factor

$$
K=\frac{\sigma^{N^{i} L O}}{\sigma^{L O}}
$$

- Accurate Theoretical Predictions

Scale dependence: first error estimate
According to "master formula"
$\sigma\left(p_{1}, p_{2}\right)=\sum_{a, b} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)$

$$
\times \hat{\sigma}_{a b}\left(x_{1} p_{1}, x_{2} p_{2}, \alpha_{s}\left(\mu_{R}^{2}\right), \mu_{R}^{2}, \mu_{F}^{2}\right)
$$

- 2 unphysical scales: dependence cancels if computed to all orders

$$
\begin{array}{ll}
\mu_{R} & \text { Renormalization scale } \\
\mu_{F} & \text { Factorization scale }
\end{array}
$$

- after "perturbative" truncation: unphysical dependence remains
- (naive) estimate of size of missing higher orders

Go back to our "well-known" $\quad R_{\text {had }} \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$

At NLO the result is

$$
R_{\mathrm{had}}=R^{(0)}\left(1+\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)
$$

Scale dependence: at which scale evaluate the coupling?
Scale is unphysical, in principle any value possible, but...
According to RGE, dependence cancels if observable computed to all orders in perturbation theory

The renormalization group equations tell us

$$
\alpha_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}\left(\mu_{0}^{2}\right)}{1+\beta_{0} \alpha_{s}\left(\mu_{0}^{2}\right) \log \frac{\mu^{2}}{\mu_{0}^{2}}}
$$

Expanded to first order reads

$$
\alpha_{s}\left(\mu^{2}\right)=\alpha_{s}\left(\mu_{0}^{2}\right)-\alpha_{s}^{2}\left(\mu_{0}^{2}\right) \beta_{0} \log \frac{\mu^{2}}{\mu_{0}^{2}}+\ldots
$$

$$
R_{\mathrm{had}}=R^{(0)}\left(1+\frac{\alpha_{s}\left(\mu_{0}^{2}\right)}{\pi}-\alpha_{s}^{2}\left(\mu_{0}^{2}\right) \beta_{0} \log \frac{\mu^{2}}{\mu_{0}^{2}}+\ldots\right)
$$

Notice that if computed to NLO, scale dependence appears at NNLO
Coefficients in general depend on LOGS of ratios of energy scales
For single scale problems (as here), it is convenient to chose renormalization (and factorization) scales close to the energy scale of the process to avoid the appearance of large logarithmic terms that can spoil the convergence of the expansion $\mu \sim Q$

TH uncertainties are usually estimated by performing scale variations : provides a lower limit on the size of missing higher-order contributions

If scale dependence is large then large higher order corrections expected for sure (should cancel that!)

If scale dependence is small, might bę that convergence if faster

Use Q for central value and spread as "TH uncertainty"

$$
R^{t h}=\bar{R} \pm \Delta R
$$

Uncertainty can only be reduced by explicit higher order calculation

Drell-Yan

- scale-dependence

Band instead of single line

$$
\begin{aligned}
& \frac{M_{\mu^{+} \mu^{-}}}{2} \leq \mu_{F} \leq 2 M_{\mu^{+} \mu^{-}} \\
& \frac{M_{\mu^{+} \mu^{-}}}{2} \leq \mu_{R} \leq 2 M_{\mu^{+} \mu^{-}}
\end{aligned}
$$

- factor of 2 conventional/historical
-usually "works" : anticipate higher order corrections
- Sometimes... it fails...

Scale dependence considerably reduced at higher orders

Notice that LO scale dependence fails to estimate NLO result!

- Effect of extra radiation : more partons
$e^{+} e^{-} \rightarrow$ hadrons

More accurate description of jet structure : first time appears at NLO (one extra parton)

- Opening of new channels

Sometimes new channels at higher order provide large corrections due to parton luminosity (pdf, non-perturbative-pertubative interplay)

ODiphoton production : main background to Higgs search

$\mathcal{O}\left(\alpha_{s}^{0}\right)$ but $q \bar{q}$ Luminosity
$\gamma \gamma_{\text {production }}$

$\mathcal{O}\left(\alpha_{s}\right)$ but $q g$ Luminosity

$\mathcal{O}\left(\alpha_{s}^{2}\right)$ but $g g$ Luminosity

Box (subset of NNLO) known to be as large as Born!
Dicus, Willenbrock

How to do NLO?

Higher order calculations are difficult....
NLO timeline
G. Salam, La Thuile 2012

Slow progress during the first 30 years, one extra particle per decade.....

Experimenter's wish-list (Les Houches)

Process ($V \in\{Z, W, \gamma\}$)	Comments
Calculations completed since Les Houches 2005	
1. $p p \rightarrow V V$ jet	$W W$ jet completed by Dittmaier/Kallweit/Uwer $[4,5]$; Campbell/Ellis/Zanderighi [6]. $Z Z$ jet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7]
2. $p p \rightarrow$ Higgs +2 jets	NLO QCD to the $g g$ channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier [9,10]
3. $p p \rightarrow V V V$	$\begin{aligned} & Z Z Z \text { completed by Lazopoulos/Melnikov/Petriello [11] } \\ & \text { and } W W Z \text { by Hankele/Zeppenfeld [12] } \\ & \text { (see also Binoth/Ossola/Papadopoulos/Pittau [13]) } \end{aligned}$
4. $p p \rightarrow t \bar{t} b \bar{b}$ 5. $p p \rightarrow V+3$ jets	relevant for $t \bar{t} H$ computed by Bredenstein/Denner/Dittmaier/Pozzorini [14,15] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16] calculated by the Blackhat/Sherpa [17] and Rocket [18] collaborations
Calculations remaining from Les Houches 2005	
6. $p p \rightarrow t \bar{t}+2 \mathrm{j}$ ets 7. $p p \rightarrow V V b \bar{b}$, 8. $p p \rightarrow V V+2 \mathrm{jets}$	relevant for $t \bar{t} H$ computed by Bevilacqua/Czakon/Papadopoulos/Worek [19] relevant for VBF $\rightarrow H \rightarrow V V, t \bar{t} H$ relevant for $\mathrm{VBF} \rightarrow H \rightarrow V V$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [20-22]
NLO calculations added to list in 2007	
9. $p p \rightarrow b \bar{b} b \bar{b}$	$q \bar{q}$ channel calculated by Golem collaboration [23]
NLO calculations added to list in 2009	
10. $p p \rightarrow V+4$ jets 11. $p p \rightarrow W b \bar{b} j$ 12. $p p \rightarrow t \bar{t} t \bar{t}$	top pair production, various new physics signatures top, new physics signatures various new physics signatures
Calculations beyond NLO added in 2007	
13. $g g \rightarrow W^{*} W^{*} \mathcal{O}\left(\alpha^{2} \alpha_{s}^{3}\right)$ 14. NNLO $p p \rightarrow t \bar{t}$ 15. NNLO to VBF and $Z / \gamma+$ jet	backgrounds to Higgs normalization of a benchmark process Higgs couplings and SM benchmark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for W / Z	precision calculation of a SM benchmark

Real and virtual contributions : separately divergent

1 loop
IR + UV divergent
dimensional regularization

$\frac{1}{\epsilon^{2}}$

1 extra parton
IR in soft/collinear configurations

At Next-to-Leading Order (NLO)

$$
\sigma_{N L O}=\int_{m+1} d \sigma^{R}+\int_{m} d \sigma^{V} \quad+\begin{gathered}
\text { renormalization } \\
\text { and factorization }
\end{gathered}
$$

But don't want to (or can't) repeat the calculation every time the definition of the observable changess try to avoid analytical calculations

How NLO in general : subtraction method

Subtract (and add!) a term with the same singularities as the real contribution but much simpler to integrate (analytically) and universal (valid for any process)

$$
\begin{gathered}
d \sigma_{N L O}=\int_{d \Phi_{n+1}}\left(d \sigma_{N L O}^{R}-d \sigma_{N L O}^{S}\right)+\left[\int_{d \Phi_{n}} d \sigma_{N L O}^{V}+\int_{d \Phi_{n}}\left(\int_{d \Phi_{1}} d \sigma_{N L O}^{S}\right)\right] \\
\text { finite compute } \\
\text { numerically }
\end{gathered} \begin{aligned}
& \text { until recently needed dedicated } \\
& \text { analytical calculation for virtual }
\end{aligned}
$$

Only need to analytically integrate the subtraction term (and virtual)
Subtraction term can be constructed because we understand the singular (soft and collinear) structure of QCD amplitudes

$$
\begin{aligned}
& d \sigma_{N L O}=\int_{d \Phi_{n+1}}\left(d \sigma_{N L O}^{R}-d \sigma_{N L O}^{S}\right)+ {\left[\int_{d \Phi_{n}} d \sigma_{N L O}^{V}+\int_{d \Phi_{n}}\left(\int_{d \Phi_{1}} d \sigma_{N L O}^{S}\right)\right] } \\
& \text { inite compute } \begin{array}{l}
\text { until recently needed dedicated } \\
\text { numerically }
\end{array} \\
& \text { analytical calculation for virtual }
\end{aligned}
$$

we understand the (universal) infrared behavior of amplitudes

collinear and soft limits

Different implementations for the subtraction term

- Dipole Catani, Seymour
- Antenna Kosower
- FKS

Frixione, Kunszt, Signer
Resulting code can compute several observables at once :change of measurement function (IR safe observables)

Many individual calculations but very complicated for large multiplicities

Real radiation automated using subtraction + tree level techniques

- SHERPA
- MadDipole
- Helac/Phegas
- TeVJet
- AutoDipole
- MadFKS

Gleisberg, Krauss
Frederix, Greiner, Gerhmann
Czakon, Papadopoulos, Worek
Seymour, Tevlin
Hasegawa, Moch, Uwer
Frederix, Frixione, Maltoni, Stelzer

Problem "conceptually" solved during the 90 's

Bottleneck was in the virtual contribution

$2 \rightarrow 2$ all known
$2 \rightarrow 3$ almost all known
$2 \rightarrow 4$ many in 2010-2012
$2 \rightarrow 5$ new from 2013

$$
\int d^{d} k \frac{N(p, k)}{\left(k^{2}-m^{2}\right)\left((p-k)^{2}-m^{2}\right)}
$$

$N(p, k)=1$ Scalar integral : all known at one loop!
$N(p, k)=k^{\mu} k^{\nu} \quad$ Tensor integral

$$
\int \ldots=A p^{\mu} p^{\nu}+B g^{\mu \nu}
$$

Contract both sides with
$p_{\mu} p_{\nu}, g_{\mu \nu}$

$$
\begin{aligned}
k^{\mu} k^{\nu} g_{\mu \nu} & =\left(k^{2}-m^{2}\right)+m^{2} \\
k^{\mu} p_{\mu}=k \cdot p & =\frac{1}{2}\left(k^{2}-\left((p-k)^{2}-m^{2}\right)\right)
\end{aligned}
$$

Obtain a very simple set of algebraic equations from where can extract A and B as combinations of scalar integrals

Feynmanian approach

- Perform tensorial decomposition from Feynman diagrams
- Compute coefficients (Passarino-Veltman)
- Scalar integrals known (analytical and numerical evaluation)

But for large multiplicities...
9. Large number of diagrams (>1000)

- Growing number of terms in tensor reduction

If Numerical stability : vanishing of Gram determinant
$2 \rightarrow 4$ was considered an impossible task
But with clever ideas!

$$
\begin{aligned}
& p p \rightarrow t \bar{t} \bar{b} \overline{ } \\
& p p \rightarrow W^{+} W^{-} b \bar{b} \\
& p p \rightarrow b \bar{b} \bar{b}
\end{aligned}
$$

Unitarian approach

Find the coefficients using multi-particle cuts from generalized unitarity
replace propagator by (on-shell) cut line (delta, complex momentum)

Quadrupole cuts: 4 on-shell conditions on 4-dimensional loop momentum freezes the integration box coefficient

No need of Feynman diagrams Tree level amplitudes Different methods for rational part (D-dimensional) recursive relations

$$
\begin{aligned}
& p p \rightarrow V+5 \text { jets } \\
& 2 \text { to } 7 \text { particles! }
\end{aligned}
$$

Very clever ideas include OPP: decomposition at the integrand level
Ossola, Papadopoulos, Pittau (2006)

$$
\begin{aligned}
& \mathcal{A}_{N}=\sum_{\left[i_{1} \mid i_{4}\right]}\left(d_{i_{1} i_{2} i_{3} i_{4}} I_{i_{1} i_{2} i_{3} i_{4}}^{(D)}\right)+\sum_{\left[i_{1} \mid i_{3}\right]}\left(c_{i_{1} i_{2} i_{3}} I_{i_{1} i_{2} i_{3}}^{(D)}\right)+\sum_{\left[i_{1} \mid i_{2}\right]}\left(b_{i_{1} i_{2}} I_{i_{1} i_{2}}^{(D)}\right) \\
&
\end{aligned}
$$

Coefficients can be determined just by solving a system of equations : no loop, just algebra!

Universal - applicable to any process
Simple - based on basic algebraic properties
Ready for automation - easy to implement in a computer code

Combination of methods
efficient numerical evaluation

Fully automated computation of I-loop amplitudes!

\author{

- CutTools Ossola, Papadopoulos, Pittau
 -Rocket Ellis, Giele, Kunszt, Melnikov, Zanderighi
 -Samurai Mastrolia, Ossola, Reiter,Tramontano
 -Blackhat Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maître, Gleisberg
 - Golem Binoth, Guillet, Heinrich, Pilon Reiter
 - Helac-Iloop Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau, Worek
 - MadLoop Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau
 - OpenLoops Pozzorini, Cascioli, Maierhöfer, Buccioni, Zoller, Lang, Zhang, Lindert
 and many others Lazopoulos; Giele, Kunszt, Winter, etc...
}

Experimenter's wish-list

NLO timeline

1980	1985	1990	1995	2000	2005	2010

The NLO revolution

Combination of all the tools described before (and many others) allowed and amazing progress in the last few years

Large multiplicities relevant for LHC Key is Automation!!

- Final goal: Really automatic NLO calculations

zero cost for humans

"Automatic NLO calculation "conceptually" solved

- in a few years a number of codes
$\sqrt{ }$ compete on precision, flexibility, speed, stability, ...
\checkmark many features : uncertainties, ...

HELAC-NLO, Rocket, BlackHat+SHERPA, GoSam+SHERPA/ MADGRAPH, NJet+SHERPA, Madgraph5-aMC@NLO, RECOLA, OpenLoops+SHERPA

MG5_aMC@NLO

[Alwall et al. arXiv: I 405.030 I]

Process Vector boson + jets	Syntax		LO 13 TeV			

Process Vector-boson pair + jets		Syntax	Cross section (pb)				
		LO 13 TeV	NLO 13 TeV				
b. 1	$p p \rightarrow W^{+} W^{-}(4 \mathrm{f})$		$\mathrm{p} p$ > $\mathrm{w}^{+} \mathrm{w}^{-}$	$7.355 \pm 0.005 \cdot 10^{1}$	${ }_{-6.1}^{+5.0 \%}+{ }_{-1}$	$1.028 \pm 0.003 \cdot 10^{2}$	$\begin{gathered} { }_{-4.5 \%}^{+4.0 \%}{ }_{-1.4 \%}^{+1.9 \%} \end{gathered}$
b. 2	$p p \rightarrow Z Z$	pp>zz	$1.097 \pm 0.002 \cdot 10^{1}$	${ }_{-5.6 \%}^{+4.5 \%}+1.9 \%$	$1.415 \pm 0.005 \cdot 10^{1}$		
b. 3	$p p \rightarrow Z W^{ \pm}$	$\mathrm{p} p>\mathrm{z}$ wpm	$2.777 \pm 0.003 \cdot 10^{1}$	${ }_{\text {- }}{ }_{-7 \% \%}^{+3.6 \%}{ }_{-1.5 \%}^{+2.00 \%}$	$4.487 \pm 0.013 \cdot 10^{1}$		
b. 4	$p p \rightarrow \gamma \gamma$	p p	$2.510 \pm 0.002 \cdot 10^{1}$	${ }_{-22.4 \%}^{+22.1 \%}{ }_{-2.1 \%}^{+2.4 \%}$	$6.593 \pm 0.021 \cdot 10^{1}$		
b. 5	$p p \rightarrow \gamma Z$	pp>az	$2.523 \pm 0.004 \cdot 10^{1}$	+9.9\% +2.0\%	$3.695 \pm 0.013 \cdot 10^{1}$	${ }^{-5.4 \%}+1.8 \%$	
b. 6	$p p \rightarrow \gamma W^{ \pm}$	$\mathrm{p} p>\mathrm{a}$ wpm	$2.954 \pm 0.005 \cdot 10^{1}$		$7.124 \pm 0.026 \cdot 10^{1}$		
b. 7	$p p \rightarrow W^{+} W^{-} j(4 \mathrm{f})$	$\mathrm{p} p>\mathrm{w}^{+} \mathrm{w}^{-} \mathrm{j}$	$2.865 \pm 0.003 \cdot 10^{1}$	${ }_{-10.0 \%}^{+11.6 \%}{ }_{-0 .}^{+1 .}$	$3.730 \pm 0.013 \cdot 10^{1}$	${ }_{-4.9 \%}^{+4.9 \%}+1.10 \%$	
b. 8	$p p \rightarrow Z Z j$	$p \mathrm{p}>\mathrm{zzj}$	$3.662 \pm 0.003 \cdot 10^{0}$	${ }_{-9.3 \%}^{+10.9 \%}{ }_{-0.8 \%}^{+1.0 \%}$	$4.830 \pm 0.016 \cdot 10^{0}$	${ }_{-4.8 \%}^{+5.0 \%}{ }_{-0.9 \%}^{+1.1 \%}$	
b. 9	$p p \rightarrow Z W^{ \pm}{ }_{j}$	$p \mathrm{p}>\mathrm{zwpm} \mathrm{j}$	$1.605 \pm 0.005 \cdot 10^{1}$	${ }_{-10.0 \%}^{+11.6 \%}{ }_{-0.7 \%}^{+0.9 \%}$	$2.086 \pm 0.007 \cdot 10^{1}$	${ }_{-4.8 \%}^{+4.9 \%}{ }_{-0.7 \%}^{+0.9 \%}$	
b. 10	$p p \rightarrow \gamma \gamma j$	$p \mathrm{p}>\mathrm{a} \mathrm{aj}^{\text {j }}$	$1.022 \pm 0.001 \cdot 10^{1}$	${ }_{-17.7 \%}^{+20.3 \%}{ }_{-1.5 \%}^{+1.2 \%}$	$2.292 \pm 0.010 \cdot 10^{1}$	${ }_{-15.1 \%}^{+17.2 \%}{ }_{-1.4 \%}^{+1.0 \%}$	
b.11*	$p p \rightarrow \gamma Z j$	$p \mathrm{p}>\mathrm{azj}$	$8.310 \pm 0.017 \cdot 10^{0}$	${ }_{-12.8 \%}^{+14.5 \%}{ }_{-1.0 \%}^{+1.0 \%}$	$1.220 \pm 0.005 \cdot 10^{1}$	${ }_{-7.4 \%}^{+7.3 \%}+0.9 .9 \%$	
b. 12^{*}	$p p \rightarrow \gamma W^{ \pm} j$	$p \mathrm{p}>\mathrm{a}$ wpm j	$2.546 \pm 0.010 \cdot 10^{1}$		$3.713 \pm 0.015 \cdot 10^{1}$	$\begin{aligned} & -7.20 \%{ }^{-0.9 .9 \% \%} \\ & { }_{-7.1 \%}^{+0.9 \%}{ }_{-1.0 \%} \end{aligned}$	
b. 13	$p p \rightarrow W^{+} W^{+} j j$	$\mathrm{p} p$ > $\mathrm{w}^{+} \mathrm{w}^{+} \mathrm{j} j$	$1.484 \pm 0.006 \cdot 10^{-1}$	${ }_{-18.9 \%}^{+25.4 \%}{ }_{-1.5 \%}^{+2.1 \%}$	$2.251 \pm 0.011 \cdot 10^{-1}$	$\begin{aligned} & +10.5 \% \\ & { }_{-10.6 \%}^{+1.6 \%} \\ & \hline 1.2 .6 \% \end{aligned}$	
b. 14	$p p \rightarrow W^{-} W^{-} j j$	$p \mathrm{p}>\mathrm{w}-\mathrm{w}-\mathrm{j} j$	$6.752 \pm 0.007 \cdot 10^{-2}$	${ }_{-18.9 \%}^{+25.4 \%}{ }_{-1.7 \%}$	$1.003 \pm 0.003 \cdot 10^{-1}$	${ }_{-10.4 \%}^{+10.1 \%}{ }_{-1.8 \%}^{+2.5 \%}$	
b. 15	$p p \rightarrow W^{+} W^{-} j j(4 \mathrm{f})$	$p \mathrm{p}>\mathrm{w+} \mathrm{w}^{-} \mathrm{j}^{j}$	$1.144 \pm 0.002 \cdot 10^{1}$	${ }_{-19.9 \%}^{+27.2 \%}{ }_{-0.5 \%}^{+0.7 \% \%}$	$1.396 \pm 0.005 \cdot 10^{1}$	${ }_{-6.8 \%}^{+5.0 \%}{ }_{-0.6 \%}^{+0.7 \%}$	
b. 16	$p p \rightarrow Z Z j j$	$\mathrm{p} p>\mathrm{zzj} \mathrm{j}^{\text {d }}$	$1.344 \pm 0.002 \cdot 10^{0}$	${ }_{-19.6 \%}^{+26.6 \%}{ }_{-0.6 \%}^{+0.7 \%}$	$1.706 \pm 0.011 \cdot 10^{0}$	${ }_{-7.2 \%}^{+5.8 \%}{ }_{-0.6 \%}^{+0.8 \%}$	
b. 17	$p p \rightarrow Z W^{ \pm} j j$	p $p>z \mathrm{wpm} \mathrm{j} j$	$8.038 \pm 0.009 \cdot 10^{0}$	${ }_{-19.7 \%}^{+26.7 \%}{ }_{-0.5 \%}^{+0.7 \%}$	$9.139 \pm 0.031 \cdot 10^{0}$	${ }_{-5.1 \%}^{+3.1 \%}{ }_{-0.5 \%}^{+0.7 \%}$	
b. 18	$p p \rightarrow \gamma \gamma j j$	$\mathrm{p} p$ > a a ${ }^{\text {j }} \mathrm{j}$	$5.377 \pm 0.029 \cdot 10^{0}$	${ }_{-19.8 \%}^{+26.2 \%}{ }_{-1.0 \%}^{+0.6 \%}$	$7.501 \pm 0.032 \cdot 10^{0}$	${ }_{-10.1 \%}^{+8.8 \%}{ }_{-1.0 \%}^{+0.6 \%}$	
b.19*	$p p \rightarrow \gamma Z j j$	pp > az ${ }^{\text {j }}$	$3.260 \pm 0.009 \cdot 10^{0}$	${ }_{-18.4 \%}^{+24.3 \%}{ }_{-0.6 \%}^{+0.6 \%}$	$4.242 \pm 0.016 \cdot 10^{0}$	${ }_{-7.3 \%}^{+6.5 \%}{ }_{-0.6 \%}^{+0.6 \% \%}$	
b. 20^{*}	$p p \rightarrow \gamma W^{ \pm} j j$	p p > a wpm j j	$1.233 \pm 0.002 \cdot 10^{1}$	${ }_{-18.6 \%}^{+24.7 \%}{ }_{-0.6 \%}^{0.6 \%}$	$1.448 \pm 0.005 \cdot 10^{1}$	${ }_{-5.4 \%}^{+3.6 \%}{ }_{-0.7 \%}^{0.6 \%}$	

GoSAM+Ninja

[van Duerzen et al. arXiv: $13 \mid 2.6678]$

Benchmarks: GoSam + NinJa			
Process		\# NLO diagrams	ms/event
$W+3 j$	$d \bar{u} \rightarrow \bar{\nu}_{e} e^{-} g g g$	1411	226
$Z+3 j$	$d \bar{d} \rightarrow e^{+} e^{-} g g g$	2928	1911
$Z Z Z+1 j$	$u \bar{u} \rightarrow Z Z Z g$	915	*12000
$W W Z+1 j$	$u \bar{u} \rightarrow W^{+} W^{-} Z g$	779	*7050
$W Z Z+1 j$	$u \bar{d} \rightarrow W^{+} Z Z g$	756	*3 300
$W W W+1 j$	$u \bar{d} \rightarrow W^{+} W^{-} W^{+} g$	569	*1800
$Z Z Z Z$	$u \bar{u} \rightarrow Z Z Z Z$	408	*1 070
$W W W W$	$u \bar{u} \rightarrow W^{+} W^{-} W^{+} W^{-}$	496	*1350
$t \bar{t} b \bar{b}\left(m_{b} \neq 0\right)$	$d \bar{d} \rightarrow t \bar{t} b \bar{b}$	275	178
	$g g \rightarrow t \bar{t} b \bar{b}$	1530	5685
$t \bar{t}+2 j$	$g g \rightarrow t \bar{t} g g$	4700	13827
$Z b \bar{b}+1 j\left(m_{b} \neq 0\right)$	$d u g \rightarrow u e^{+} e^{-} b \bar{b}$	708	*1 070
$W b \bar{b}+1 j\left(m_{b} \neq 0\right)$	$u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g$	312	67
$W b \bar{b}+2 j\left(m_{b} \neq 0\right)$	$u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} s \bar{s}$	648	181
	$u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} d \bar{d}$	1220	895
	$u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g g$	3923	5387
$W W b \bar{b}\left(m_{b} \neq 0\right)$	$d \bar{d} \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b}$	292	115
	$g g \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b}$	1068	*5 300
$W W b \bar{b}+1 j\left(m_{b}=0\right)$	$u \bar{u} \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b} g$	3612	*2 000
$H+3 j$ in GF	$g g \rightarrow H g g g$	9325	8961
$t \bar{t} Z+1 j$	$u \bar{u} \rightarrow t \bar{t} e^{+} e^{-} g$	1408	1220
	$g g \rightarrow t \bar{t} e^{+} e^{-} g$	4230	19560
$t \bar{t} H+1 j$	$g g \rightarrow t \bar{t} H g$	1517	1505
$H+3 j$ in VBF	$u \bar{u} \rightarrow H g u \bar{u}$	432	101
$H+4 j$ in VBF	$u \bar{u} \rightarrow H g g u \bar{u}$	1176	669
$H+5 j$ in VBF	$u \bar{u} \rightarrow$ Hgggu \bar{u}	15036	29200

$$
+ \text {... total of I } 72 \text { processes up to } 2 \rightarrow 4
$$

How easy is NLO these days?

```
import model loop_sm-no_b_mass
define p = g u u~ c c~}d d~ s s~ b b~
define j = g u u~ c c~}d\mp@subsup{d}{~}{~}s\mp@subsup{s}{}{~}b\mp@subsup{b}{}{~
generate p p > t~ t j [QCD]
output my_pp_ttj
calculate_xs NLO
```


e.g. MadGraph5_aMC@NLO v2.I.I [Alwall et al. I 405.030 I]
generation time ~ 5 mins
total cross section ~ 30 mins (20 cores)

$$
\sigma_{p p \rightarrow \bar{t} t j}^{\mathrm{NLO}}\left(\mu_{R}=\mu_{F}=m_{t}\right)=687(7)_{-58}^{+23} \mathrm{pb}
$$

Bottleneck "only" in CPU time

Real $2 \rightarrow 8$ SHERPA Virtual $2 \rightarrow 7$ BlackHat

Dynamical Scale choice $\quad \mu_{R}=\mu_{F}=\frac{\hat{H}_{T}^{\prime}}{2} \equiv \frac{1}{2} \sum_{m} p_{T}^{m}+E_{T}^{W}$

- Dramatic reduction in scale dependence ($\sim 20 \%$)
- Up to 50\% correction (non-trivial in shape)

There are (already) measurements up to 7 jets !

Multi-jet production

$p p \rightarrow 5$ jets at NLO

- Better stability
-NLO in very good agreement with data!

Njet+Sherpa (Badger, Biedermann, Uwer, Yundir

$$
\widehat{H}_{T}=\sum_{i=1}^{N_{\text {parton }}} p_{T, i}^{\text {parton }}
$$

4jets in agreement with previous calculation by BlackHat (Z.Bern et al)

Multi-jet production

Use ratios 3 -jets/2-jets to extract coupling constant

- Coupling extraction in agreement with HERA/Tevatron

$$
\alpha_{S}\left(M_{Z}\right)=0.1148 \pm 0.0014 \text { (exp.) } \pm 0.0018 \text { (PDF) } \pm 0.0050 \text { (theory) }
$$

Not everything solved at NLO yet... but constant progress

- Parton Showers @NLO
- Automated EW corrections

QCD dominant (except very large p T)
Coupling hierarchy ~ respected
Large cancellations in EW contributions

- Loop induced Processes

$$
g g \rightarrow V V
$$

- Enhanced by gluon luminosity

Corrections for gg channel usually large (color, logs)

```
F. Caola, et al (20I5-20I6)
J. Campbell, K. Ellis, M. Czakon, S. Kirchner (2015)
```

- BSM (arbitrary, higher dimensional operators, etc)
\sim Automated!

Recap of third lecture

O "New" methods allow to compute amplitudes in a more efficient way : helicity, color, recursions

OMany tools available for LO : qualitative for colliders...
OHigher order calculations needed: scale dependence and uncertainties estimates, large higher order corrections, precision. more realistic (more partons), new channels with large luminosities, etc

O How to do NLO: subtraction method for "real" plus new techniques for numerical computation of virtual amplitudes
© Automation for NLO : very simple to compute, input card, definitions and run!

OMany high multiplicities observables computed for LHC : multi-jet
ONLO might not be enough for ${ }_{42}$ some processes...

