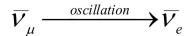
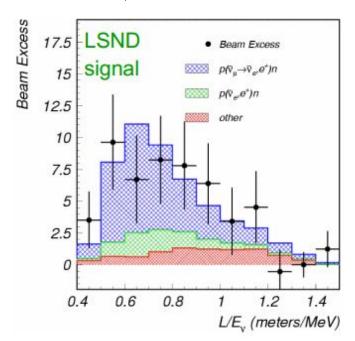


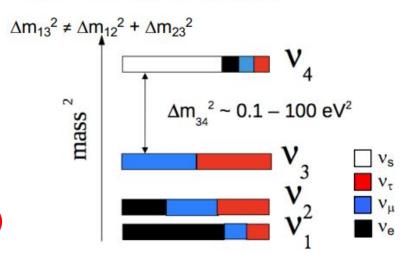
Current status - 3 neutrino generations

2 mass differences + 3 mixing angles



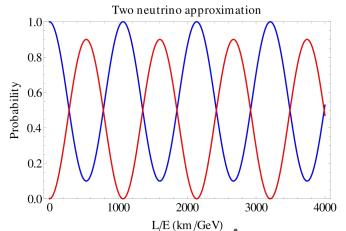


An elephant in the room



Excess of v_e : 87.9 ± 22.4 ± 6.0 (3.8 σ)

3 types of neutrino oscillations are found:


LSND neutrino oscillation: $\Delta m^2 \sim 1eV^2$ Atmospheric neutrino oscillation: $\Delta m^2 \sim 10-3eV^2$ Solar neutrino oscillation : $\Delta m^2 \sim 10-5eV^2$

But we cannot have so many Δm^2 !

Theoretical model: Neutrino Oscillations

Weak eigenstates of neutrinos are a combination of mass eigenstates

Two neutrino vacuum approximation:

$$\begin{vmatrix} \nu_e \\ \nu_\mu \end{vmatrix} = \begin{vmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{vmatrix} \cdot \begin{vmatrix} \nu_1 \\ \nu_2 \end{vmatrix}$$

$$|\nu_{\mu}(0)\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

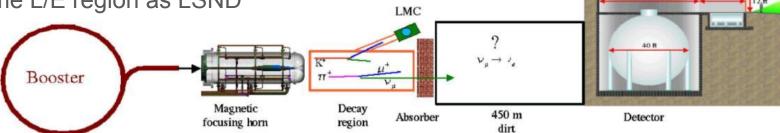
$$|\nu_{\mu}(t)\rangle = -\sin\theta \ e^{-iE_{1}t} \ |\nu_{1}\rangle + \cos\theta \ e^{-iE_{2}t} \ |\nu_{2}\rangle$$

Appearance probability

E and L fixed experimentally 2 parameters: mass difference Δm^2 , mixing angle θ

$$P_{osc} = \mid <\nu_e \mid \nu_{\mu}(t) > \mid^2$$

$$P_{osc} = sin^{2}(2\theta) \cdot \sin^{2}(\frac{1.27 \cdot \Delta m^{2} \cdot L}{E})$$

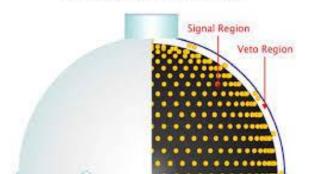


The experiment: MiniBooNE

 8 GeV proton beam from Booster strikes a beryllium target inside a magnetic focusing horn

 Beam of charged mesons generated, decay into neutrino beam

Same L/E region as LSND


Changes in the polarity of the horn to select neutrino or anti-neutrino beam

MiniBooNE Detector

- 541m downstream of target
- 12m diameter sphere (fiducial volume 10m)
- Filled with 800t of pure mineral oil (CH₂)
 (Fiducial volume: 450t)
- 1280 inner photo-multiplier tubes
- 240 veto photo-multiplier tubes

MiniBooNE Detector

• Quasi-elastic CC

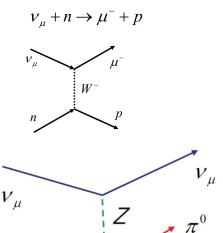
$$v_e + n \rightarrow p + e^-$$

 $v_\mu + n \rightarrow p + \mu^-$

$$v_{\mu} + n \rightarrow \mu^{-} + p$$

$$v_{\mu} \qquad \mu^{-}$$

$$m^{-}$$


Quasi-elastic CC

$$v_e + n \rightarrow p + e^-$$

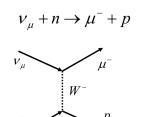
 $v_\mu + n \rightarrow p + \mu^-$

Pion production (Neutral current)

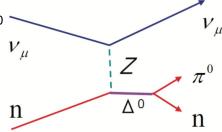
Resonant

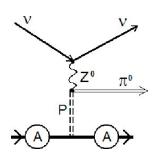
$$v_{\mu} + p \rightarrow \Delta^{+} + v_{\mu} \rightarrow p + v_{\mu} + \pi^{0}$$
 $n \Delta^{0} \qquad n \qquad v_{\mu}$

Quasi-elastic CC


$$v_e + n \rightarrow p + e^-$$

 $v_\mu + n \rightarrow p + \mu^-$


Pion production (Neutral current)


$$v_{\mu} + p \rightarrow \Delta^{+} + v_{\mu} \rightarrow p + v_{\mu} + \pi^{0} \sim V_{\mu}$$

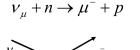
Coherent

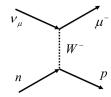
$$v_{\mu} + A \rightarrow A + v_{\mu} + \pi^0$$

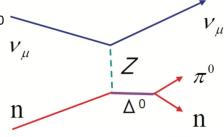
Quasi-elastic CC

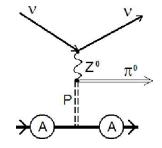
$$v_e + n \rightarrow p + e^-$$

 $v_u + n \rightarrow p + \mu^-$

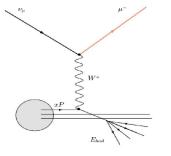

Pion production (Neutral current)


Resonant


$$v_{\mu} + p \rightarrow \Delta^{+} + v_{\mu} \rightarrow p + v_{\mu} + \pi^{0}$$
 $n \Delta^{0} \qquad n$
 v_{μ}


Coherent

$$v_{\mu} + A \rightarrow A + v_{\mu} + \pi^0$$



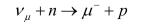
$$v_e + n \rightarrow e^- + hadrons$$

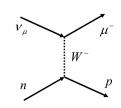
 $v_u + n \rightarrow \mu^- + hadrons$

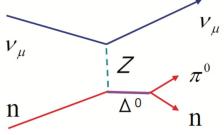
• Quasi-elastic CC

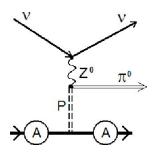
$$v_e + n \rightarrow p + e^-$$

 $v_u + n \rightarrow p + \mu^-$

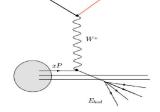

Pion production (Neutral current)


Resonant


$$v_{\mu} + p \rightarrow \Delta^{+} + v_{\mu} \rightarrow p + v_{\mu} + \pi^{0}$$
 $n \Delta^{0} \qquad n$
 v_{μ}


Coherent

$$v_{\mu} + A \rightarrow A + v_{\mu} + \pi^0$$



$$v_e + n \rightarrow e^- + hadrons$$

 $v_u + n \rightarrow \mu^- + hadrons$

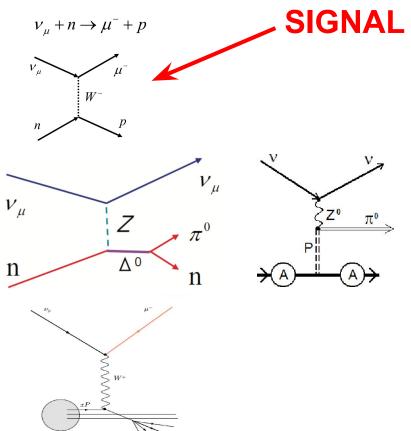
Quasi-elastic CC

$$v_e + n \rightarrow p + e^-$$

 $v_u + n \rightarrow p + \mu^-$

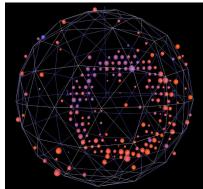
Pion production (Neutral current)

Resonant


$$v_{\mu} + p \rightarrow \Delta^{+} + v_{\mu} \rightarrow p + v_{\mu} + \pi^{0}$$
 $n \Delta^{0} \qquad n \qquad v_{\mu}$

Coherent

$$v_{\mu} + A \rightarrow A + v_{\mu} + \pi^0$$


• CC DIS (ν from kaons)

$$v_e + n \rightarrow e^- + hadrons$$

 $v_u + n \rightarrow \mu^- + hadrons$

Event Signatures: particle ID

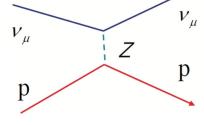
• Cherenkov light:

electrons: short track, mult. scat., brems.

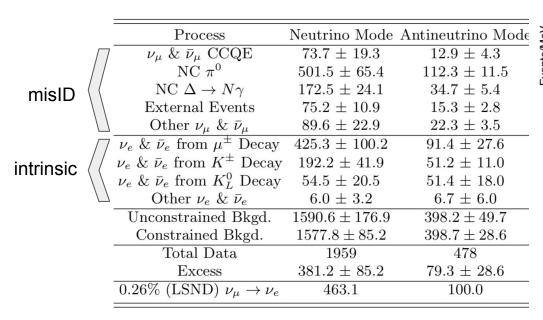
Fuzzy Ring

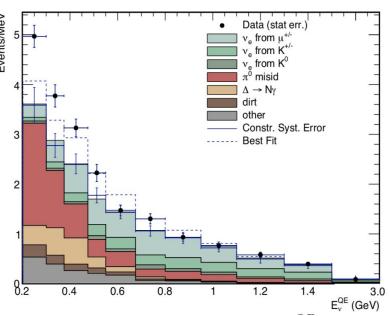
 $v_{\mu} + n \rightarrow p + \mu$

muons: long track, slows down


Sharp Outer Ring with Fuzzy Inner Region

$$v_{\mu} + p \rightarrow p + v_{\mu} + \pi^{0}$$
n n





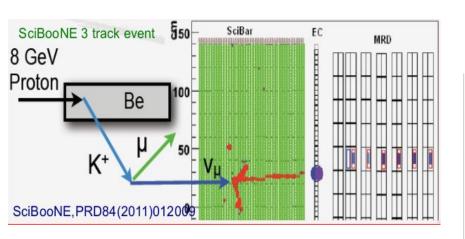
• (Isotropic) Scintillating light: NC elastic scattering - no Черенков radiation

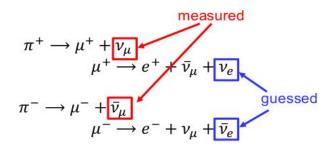
Results

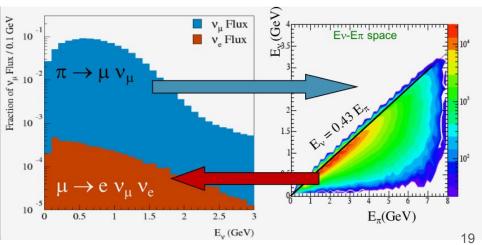
Excess of v_e : (4.8 σ)

Results

- v_e excess wrt background (v_e appearance) agrees with LSND
- Probability of background-only hypothesis: 0.21%
- Fit including two neutrino oscillation model has a probability of 21.1%
 - Best fit parameter values
 Δm²=0.041 ev²
 sin²2θ=0.92
- (significance from LSND)² + (significance from MiniBooNE)² = (given result)² $(3.8)^2 + (4.8)^2 = (6.1)^2$

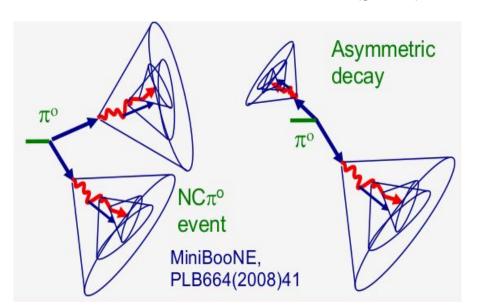

YOUR CONFERENCE PRESENTATION

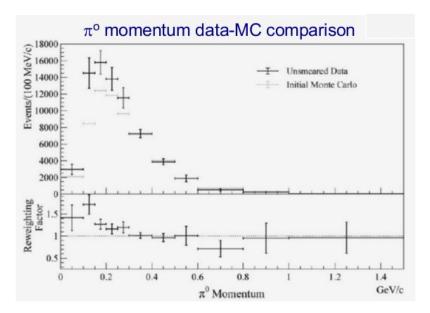



Thanks!

All backgrounds are internally constrained:

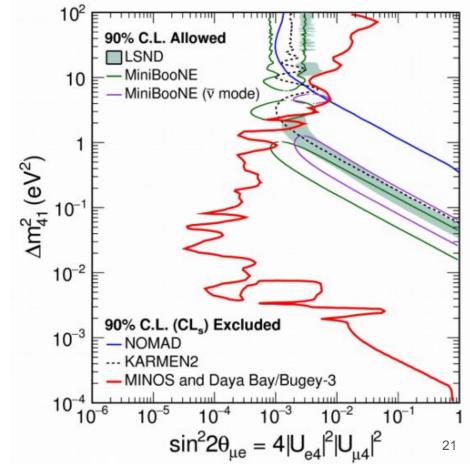
intrinsic (beam ve) = flat





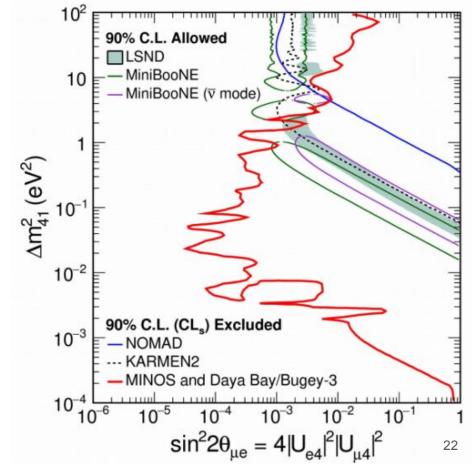
All backgrounds are internally constrained:

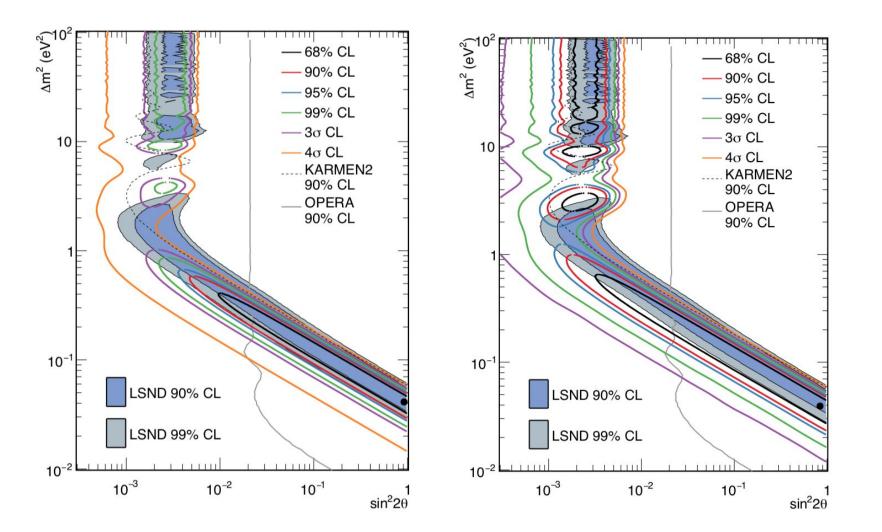
misID (gamma) = accumulate at low E



The controversy

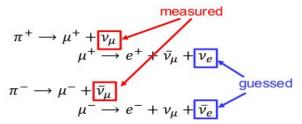
- The total significance is done by suspicious ways.
- Many members of the LSND collaboration are in the MiniBooNE collab. Possibility of **hidden** bias?
- Accusations of a **poor estimation** of neutral pions background. (also done for LSND)
- In the **Neutrino Conference 2018** (June 4-9) **MINOS** and **MINOS**+ discarded the observed signal.

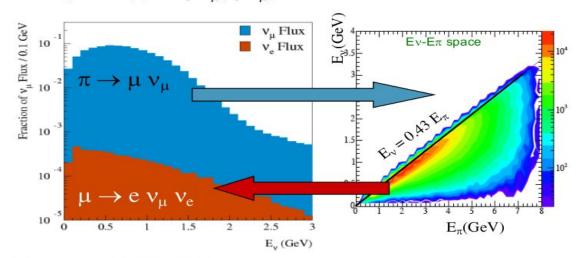




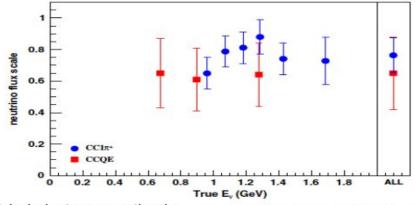
The controversy

- The total significance is done by suspicious ways.
- Many members of the LSND collaboration are in the MiniBooNE collab. Possibility of **hidden** bias?
- Accusations of a **poor estimation** of neutral pions background. (also done for LSND)
- In the **Neutrino Conference 2018** (June 4-9) **MINOS** and **MINOS**+ discarded the observed signal.

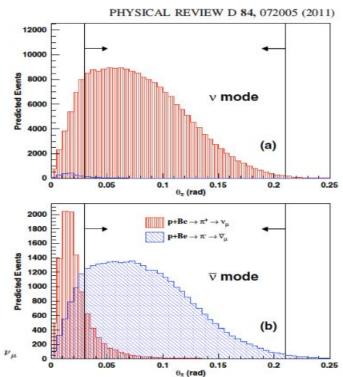




All backgrounds are internally constrained

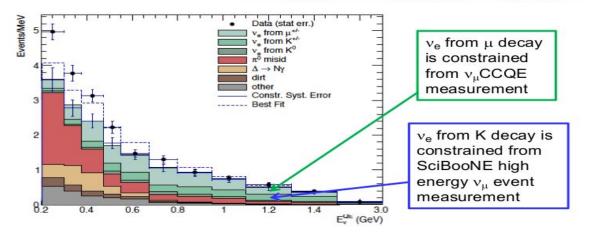

- → intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E

They are large background, but we have a good control of $\nu_e \& \bar{\nu}_e$ background by joint $\nu_e \& \nu_\mu (\bar{\nu}_e \& \bar{\nu}_\mu)$ fit for oscillation search.



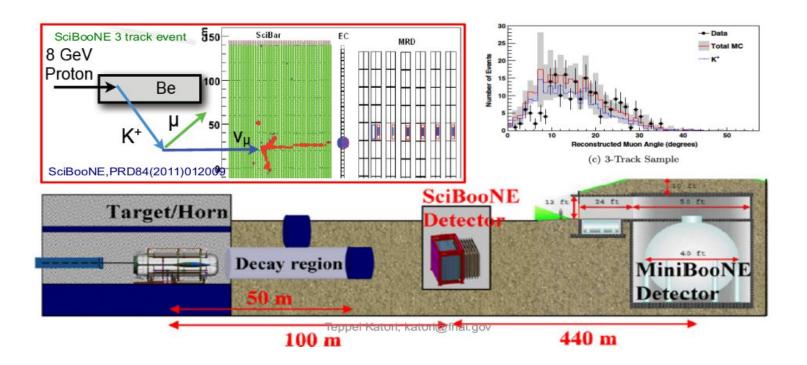
 $\bar{\nu}_e \& \bar{\nu}_\mu$ flux are harder to predict due to larger wrong sign $(\nu_e \& \nu_\mu)$ background, and measured lepton kinematics and π^+ production are used to tune flux \rightarrow they consistently suggest we overestimate antineutrino flux around 20%

Michel electron counting is sensitive to ν_{μ} contamination 2: in $\bar{\nu}_{\mu}$ beam 3:


1: $\nu_{\mu} + p(n) \rightarrow \mu^{-} + p(n) + \pi^{+} \hookrightarrow \mu^{+} + \nu_{\mu}$ 2: $\hookrightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$ 3: $\hookrightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$.

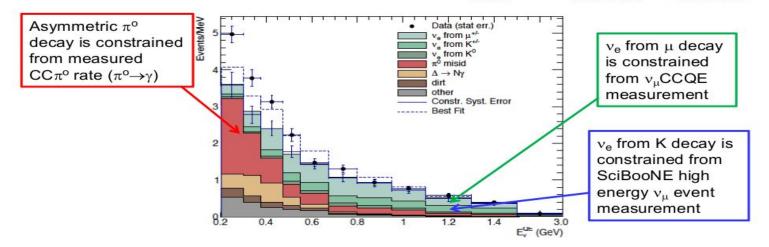
All backgrounds are internally constrained

- → intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E


Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} \text{ CCQE}$	73.7 ± 19.3	12.9 ± 4.3
$NC \pi^0$	501.5 ± 65.4	112.3 ± 11.5
$NC \Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e$ from μ^{\pm} Decay	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \nu_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

MiniBooNE and SciBooNE

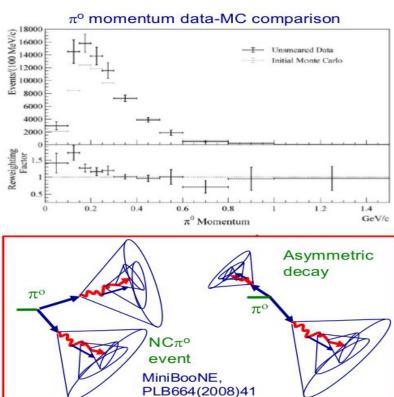
SciBooNE is a scintillator tracker located on BNB (detector hall is used by ANNIE now)


- neutrinos from kaon decay tend to be higher energy, and tend to make 3 tracks
- from 3 track analysis, kaon decay neutrinos are constrained (0.85±0.11, prior is 40% error)

All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E

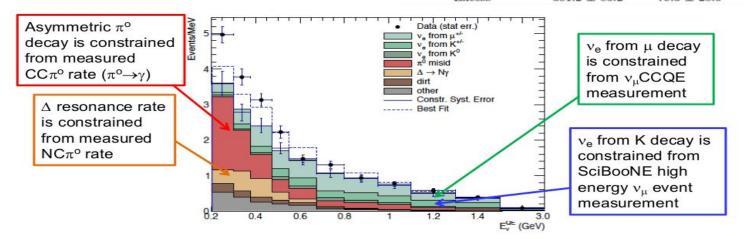
Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu}$ CCQE	73.7 ± 19.3	12.9 ± 4.3
$NC \pi^0$	501.5 ± 65.4	112.3 ± 11.5
$NC \Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e$ from μ^{\pm} Decay	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \nu_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

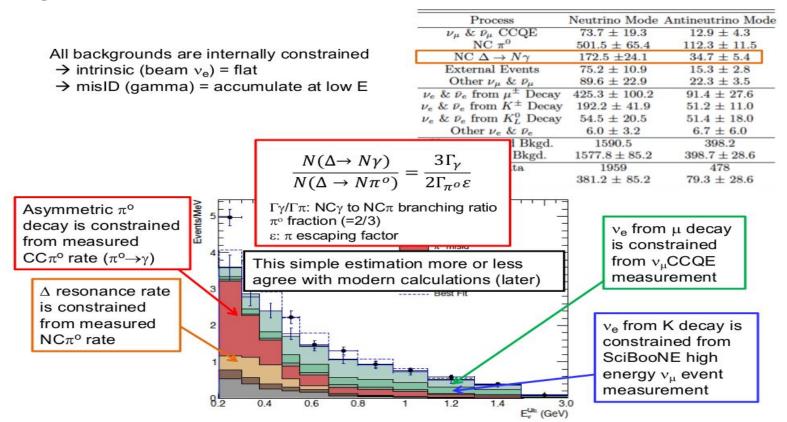

 $\pi^{o} \rightarrow \gamma \gamma$

- not background, we can measure $\pi^{\circ} \rightarrow \gamma$

- misID background, we cannot measure

The biggest systematics is production rate of π^{o} , because once you find that, the chance to make a single gamma ray is predictable.

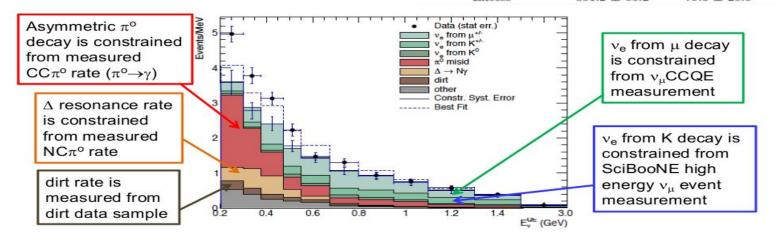

We measure $\pi^{\rm o}$ production rate, and correct simulation with function of $\pi^{\rm o}$ momentum



All backgrounds are internally constrained

- → intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} \text{ CCQE}$	73.7 ± 19.3	12.9 ± 4.3
$NC \pi^0$	501.5 ± 65.4	112.3 ± 11.5
$NC \Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e$ from μ^{\pm} Decay	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay		51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6



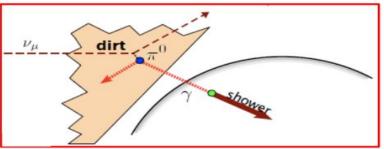
All backgrounds are internally constrained

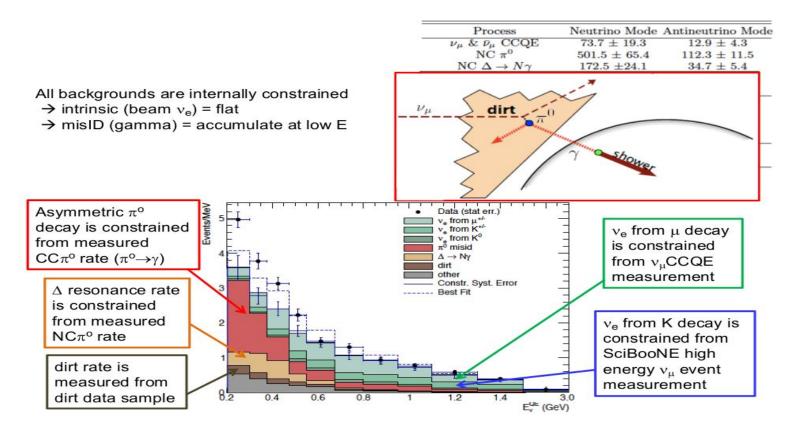
- → intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} \text{ CCQE}$	73.7 ± 19.3	12.9 ± 4.3
$NC \pi^0$	501.5 ± 65.4	112.3 ± 11.5
$NC \Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e$ from μ^{\pm} Decay	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

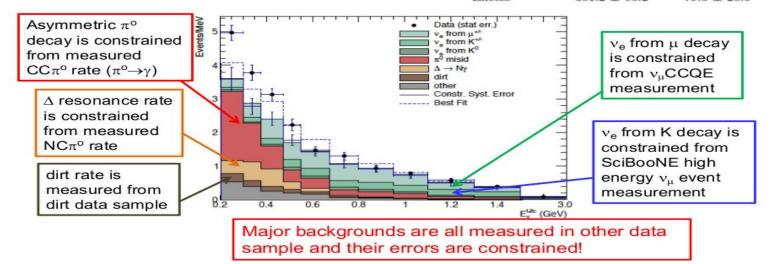
MiniBooNE detector has a simple geometry

- Spherical Cherenkov detector
- Homogeneous, large active veto


We have number of internal measurement to understand distributions of external events.


e.g.) NC elastic candidates with function of Z Mis-modelling of external background is visible

Z (m)



All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- → misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
$NC \pi^0$	501.5 ± 65.4	112.3 ± 11.5
$NC \Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e$ from μ^{\pm} Decay	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \nu_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

Conclusions

MiniBooNE has observed: (with energies within 200 and 1250 MeV)

- In neutrino mode: 1959 events, from a total of 1577 events. This give us a quantity of 381 events, this would be **4.8 σ**.
- In antineutrino mode: 2437 events, from a total of 1976 events. This give us a quantity of 460 events, this would be **4.5** σ .

After this, together with the LSND results:

(significance from LSND)² + (significance from MiniBooNE)² = (given result)²

$$(3.8)^2 + (4.8)^2 = (6.1)^2$$

Although the data are fit with a **two-neutrino oscillation model**, other exotic models may provide better fits to the data. e.g.: sterile neutrinos.