

09.26.2019

Modeling of Quench Protection Concepts for Canted-Cosine-Theta Type High-Field Magnets

Jiani Gao¹, B. Auchmann^{1,2}, L. Brouwer³, A. Pautz^{1,4}, S. Sanfilippo¹

¹PSI, Villigen, Switzerland ²CERN, Geneva, Switzerland ³LBNL, Berkeley, USA

⁴EPFL, Lausanne, Switzerland

Work supported by the Swiss State Secretariat for Education, Research and Innovation SERI.

- Introduction
- Quench protection simulations of 2-layer CCT-type magnets
 - Study of energy extraction
 - CLIQ unit behavior
- Conclusion

- Future Circular Collider: 16 T dipole magnets required
- Canted-Cosine-Theta: a possible candidate for FCC

— Former: mechanical stability √, quench propagation X

- Quench protection criteria: $T_{\text{max}} = 350 \text{ K}$, $V_{\text{GND}} = 1 \text{ kV}$
- Energy extraction + coupling-loss induced quench system selected for CD1
- First-of-a-kind CCT-type magnet protection study using 2D ANSYS User-Defined Elements (developed by LBNL)

PSI Superconducting Magnet Lab (Status 2019)

Quench Propagation Simulation

- 3-turn helical model: $I_{ss} = 20 \text{ kA}$, B = 11 T, $T_{op} = 4.2 \text{ K}$
- Initial conditions: I = 18 kA, T = 20 K for 1st turn and $T = T_{op}$ for the rest

- Fast longitudinal propagation, slow turn-to-turn (and layer-to-layer) propagation due to <u>former</u>
- $T_{\text{cable}}(t,x) \rightarrow R_{\text{quench}}(t) \rightarrow V_{\text{quench}}(t) \rightarrow \Delta t_{\text{thres}}$

Cable center temp. along the coil

Study of Energy Extraction

- R_{dump} in series with magnet: R_{dump} = 40 m Ω , V_{GND} = 800 V
- Voltage detection: $t_{\rm d} = \Delta t_{\rm thres} + \Delta t_{\rm val} + \Delta t_{\rm switch}$
- $V_{\rm thres}$ = 500 mV $\rightarrow \Delta t_{\rm val} = 0$; $\Delta t_{\rm switch} = 5$ ms
- MIITs links a current-decay function to a peak temperature for a given cable type under adiabatic conditions.

MIITs =
$$10^{-6} \int_0^\infty I^2(t) dt = 10^{-6} v A^2 \int_{T_0}^{T_{\text{max}}} \frac{\overline{c_v(T)}}{\rho_{\text{Cu}}(T)} dT = F(T_{\text{max}})$$

Estimation of T_{max} after a quench

Illax						
I [kA]	$\Delta t_{ m thres}$ [ms]	$t_{\rm d}$ [ms]	$T_{\rm cable}$ [K]			
18	6.3	11.3	332			
15	13.7	18.7	250			
12	27	32	167			

< 350 K CD1 safe With FE

CLIQ Simulation using UDEs

- Coupling-loss induced quench: inter-filament coupling losses → heat generated directly in SC → a fast quench
- **Goal:** electromagnetic and electrothermal behavior of CD1 full model based on a 2D cross section model
- Thermal UDE: multi-dependence material properties
- Electromagnetic UDE: sub-strand IFCLs

Simplified CD1 circuit with EE and CLIQ in ANSYS

Modifications of UDEs for CCT-type Magnets

• Add CD1 critical current density J_c fit functions

- Define a tilt factor as $f_{\text{tilt}} = A_{\text{cab}}/A_{\text{FEM}}$, applied in all turns
 - \rightarrow Same J_c
 - → Dilute material properties

→ Right values of resistance (also *I*, *V*)

Simulation Results

Init. B field

CLIQ:

$$V_{\rm C}$$
 = 400 V

$$R_{\rm C}$$
 = 25 m Ω

 $C_{\rm C} = 10 \, {\rm mF}$

Constant $\rho(4.2 \text{ K})$ for former + shell as a conservative estimate.

		CLIQ		CLIQ+EE	
I [kA]	B [T]	$T_{\rm cable}$ [K]	$T_{\rm coil}$ [K]	$T_{\rm cable}$ [K]	T_{coil} [K]
18	10.7	144.0	144.0	68.5	129.6
12	7.3	123.8	123.8	38.5	89.0
6	3.7	10	21.3	14.5	55.2

Study of protection system from 4.2 K, temp. rise during detection not included.

Current Profiles in Stranded Elements

CLIQ works in CCT-type magnet.

→ CLIQ efficiency and EE delay times are to be studied for CD1 test.

Conclusion

- Quench protection studies of a two-layer CD1 magnet presented
 - -CD1 protectable with EE, T_{peak} < 350 K
 - Coupled simulations using CLIQ in CCT geometries
 - Simulation results will be compared to CD1 experimental data to validate generic quench simulation models
- CD1 expected to be finished and shipped to LBNL for test in Nov. 2019
- Underway subscale experiments at PSI on current detection

CLIQ Discharge, After 2 Oscillations

