Design, construction and test of thermally activated ReBCO switches

N. Bykovskiy, A. Dudarev, and H.H.J. ten Kate

Wed-Mo-Or12-03

September 25, 2019
Introduction: superconducting rectifiers

Pros:
• Minimized heats load at large current
• Compact size, even at very high currents, thus low impact of I_{op} on the overall cost
• Persistent mode when idle

Cons:
• Relatively slow charging of magnet and troublesome control of switches
• Low stability of LTS switches

The feasibility of technology was demonstrated in late 70’s using LTS switches and since that time it is in occasional use for detector magnets.
Every half-cycle consists of 4 stages:
Introduction: diagram of operation

Every half-cycle consists of 4 stages:
1. opening a switch
Every half-cycle consists of 4 stages:
1. opening a switch
2. pumping
Every half-cycle consists of
4 stages:
1. opening a switch
2. pumping
3. closing a switch
Introduction: **diagram of operation**

Every half-cycle consists of 4 stages:

1. opening a switch
2. pumping
3. closing a switch
4. commutation
Every half-cycle consists of 4 stages:

1. opening a switch
2. pumping
3. closing a switch
4. commutation

- $I_{max} \sim I_p \sqrt{L_p/L_s}$, not dependent on the load inductance L!
- Typically, I_{max}/I_p is order from hundreds to thousands
- Power loss in the open switch is proportional to $1/R$
Introduction: using ReBCO tapes for switches

Specific features of ReBCO switches:

• **high stability** margin in a closed state
• possibility to operate at **elevated temperatures**, i.e. more efficient removal of heat loads
• resistance in the normal state is very promising for etched tapes:

![Graph showing resistance per length vs. total tape thickness](image)

- Desired tape composition can be achieved (0.1 μm Ag limit) by etching in FeCl₃, using tape resistance as a feedback and magnetic stirrer to get the process uniform.

Using ‘in-house’ etching method provides **both** the high ‘off’-state and low joint resistances.

![Idealized tape composition](image)
Motivation: **development of switch bridge**

A full-wave bridge rectifier:
- modularity of the switch bridge, can be used with already existing sc transformers or be combined in parallel or in series
- simple design of the transformer secondary coil
- potential for faster charging, since the mutual inductance can be highest possible.

Features of the switch bridge layout:
- straightforward manufacturing and assembly of components
- use of 4 switches is simplified since only 2 heaters are required
- self-field effect on I_c is minimized due to anti-parallel current flow in the neighbouring stacks
- long length for connections with load coil and secondary winding and large surface to provide conduction cooling
Design study of switch bridge: selected layout

Schematic of tape arrangement:

Requirements:

• **10 kA** current capacity @ 50-60 K
• Balancing heat power to reach ‘off’ state vs rise and fall time constants of transition vs ‘off’ state resistance of switch
• Low joint resistance

Selected switch layout (option 1):

Number of tapes: 12
Number of stacks: 3
Number of Kapton layers: 4
Heater power to reach 100 K: 6.4 W/cm²
‘Off’ state resistance per switch: 1.2 mΩ/cm

* self-field for pair of switches accounted
Sample construction: **tape etching**

- Etching of **12 mm SuperOx pre-tinned tapes** in FeCl₃ using tape resistance as a feedback and magnetic stirrer for uniform process:
 - Varnish coating used to etch **8 mm section**, resistance measured over 70 mm section.
 - 12 mΩ etching threshold: SnPb and Cu layers removed, ≈ 0.3 μm thick Ag layer remained.
 - \(I_c\) of tapes measured at 77 K after etching over 40 mm section, on average 400 A (**no reduction**).
 - **36 tapes** prepared in total, 9 tapes per switch.
Sample construction: soldering & assembly

1. Copper plates pre-tinned

Kapton insulation
Sample construction: soldering & assembly

1. Copper plates pre-tinned
2. G10 fixators attached
Sample construction: soldering & assembly

1. Copper plates pre-tinned
2. G10 fixators attached
3. Tapes arranged
Sample construction: **soldering & assembly**

1. Copper plates pre-tinned
2. G10 fixators attached
3. Tapes arranged
4. Packing and soldering

* Ic tests in LN2 (next slide)
Sample construction: soldering & assembly

1. Copper plates pre-tinned
2. G10 fixators attached
3. Tapes arranged
4. Packing and soldering
 * Ic tests in LN2 (next slide)
5. Control heater attached
Sample construction: soldering & assembly

1. Copper plates pre-tinned
2. G10 fixators attached
3. Tapes arranged
4. Packing and soldering
 * Ic tests in LN2 (next slide)
5. Control heater attached
6. Complete assembly
 * testing in LN2, but rather conduction cooling conditions for ReBCO tapes

Standalone testing:
A-B: power supply
C-D: open
Sample construction: **intermediate Ic tests**

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum tape Ic, kA</td>
<td>3.8</td>
<td>3.4</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Expected Ic, kA</td>
<td>3.2</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Measured Ic, kA</td>
<td>3.1</td>
<td>1.9</td>
<td>2.6</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Retention</td>
<td>98%</td>
<td>64%</td>
<td>85%</td>
<td>69%</td>
<td>78%</td>
</tr>
</tbody>
</table>

- S0 performed as expected, but noticeable reduction of I_c observed on S1-S4 (further discussed next)
- After quench of S2 and S4:

 I_c reduced negligibly at 1 μV/cm criterion, but ≈10% reduction at the higher threshold
Sample construction: **intermediate Ic tests**

- S0 performed as expected, but noticeable reduction of I_c observed on S1-S4 (further discussed next)
- After quench of S2 and S4:
 - I_c reduced negligibly at 1 µV/cm criterion, but ≈10% reduction at the higher threshold

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum tape Ic, kA</td>
<td>3.8</td>
<td>3.4</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Expected Ic, kA</td>
<td>3.2</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Measured Ic, kA</td>
<td>3.1</td>
<td>1.9</td>
<td>2.6</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Retention</td>
<td>98%</td>
<td>64%</td>
<td>85%</td>
<td>69%</td>
<td>78%</td>
</tr>
</tbody>
</table>

![Graph showing electric field vs current for different samples before and after quench.](image)
Test in LN2: ‘off’-state resistance

- Resistance of the open switch corresponds to $\approx 0.15 \ \mu m$ and $\approx 0.42 \ \mu m$ average remained thickness of Ag and 60 μm Hastelloy layers.

- Switches are activated starting from 5 W/cm2 heater power and turned fully normal at ≈ 12 W/cm2.

- High heater power required is due to strong cooling conditions in LN2 bath.
Rise and fall times of the transitions are around \(1.5\) s for S1 & S3 and \(2.0\) s for S2 & S4, close to expected values from the thermal simulation model.

Commutation of the switches can be applied right after these time delays.
Test in LN2: effect of thermal contraction

- Etched section more sensitive to mechanical strain and mismatch in thermal shrinkage of copper and Hastelloy might be at the origin of the damage.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal expansion, % @ 220 C</th>
<th>Thermal expansion, % @ 77 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>0.34</td>
<td>-0.30</td>
</tr>
<tr>
<td>Hastelloy</td>
<td>0.23</td>
<td>-0.20</td>
</tr>
<tr>
<td>G10 //</td>
<td>0.25</td>
<td>-0.21</td>
</tr>
<tr>
<td>G10 ⊥</td>
<td>0.82</td>
<td>-0.64</td>
</tr>
</tbody>
</table>

Damaged after testing
Test in LN2: **effect of thermal contraction**

- Etched section more sensitive to mechanical strain and mismatch in thermal shrinkage of copper and Hastelloy might be at the origin of the damage.

- Tapes can be tensioned after soldering to release exceeding compression on ReBCO.

Material	**Thermal expansion, %**
Copper | 0.34 | -0.30
Hastelloy | 0.23 | -0.20
G10 // | 0.25 | -0.21
G10 ⊥ | 0.82 | -0.64
Conclusion

• The bridge type switch layout based on etched ReBCO tapes is proposed for charging high current magnets using a superconducting rectifier type flux pump.

• The construction is performed using 12 mm wide, pre-tinned SuperOx tapes and components of a simple block geometry.

• OFF-state resistance and transition time delay measured at 77 K follow the values from the dedicated simulation model.

• Some loss of current capacity after full assembly to be addressed by pre-tensioning of tapes.

• Operation in 50 to 60 K temperature range using cryocoolers is foreseen for the next models.