Reduced strain/stress sensitivity of the critical current of Nb₃Sn conductors B. Seeber¹, C. Calzolaio^{2,7}, D. Zurmühle², V. Abächerli³, M. Alessandrini⁴, G. De Marzi⁵ and C. Senatore² ## Nb₃Sn - I_c vs. strain J. Ekin, Cryogenics 20, 1980 ### ESRF set-up L. Muzzi et al., SUST 25 (2012) ### ESRF experiment L. Muzzi et al., SUST 25 (2012) OST-I for ITER (billet #7567) OD = 0.81 mm Ta barrier ### ESRF experiment L. Muzzi et al., SUST 25 (2012) OST-I for ITER (billet #7567) OD = 0.81 mm Ta barrier ### Lattice strain of Nb₃Sn Zero applied strain Without stainless steel jacket With stainless steel jacket ### Lattice strain of Nb₃Sn Modelling: S. Awaji et al. SUST 23 (2010) $\varepsilon(\theta) = \sqrt{(1 + \varepsilon_{ax0})^2 \sin^2 \theta + (1 + \varepsilon_{rad0})^2 \cos^2 \theta} - 1$ Without stainless steel jacket #### Applied tensile strain $$---\epsilon$$ = zero $$---$$ ε = 0.10% $$-$$ ε = 0.22% $$---$$ ε = 0.3% $$---$$ ε = 0.4% $$---$$ ε = 0.5% ### Lattice strain of Nb₃Sn Modelling: S. Awaji et al. SUST 23 (2010) With stainless steel jacket #### Applied tensile strain $$---\epsilon$$ = zero $$---$$ ε = 0.3% $$--$$ ε = 0.53% $$---$$ ε = 0.7% $$---$$ ε = 1.0% ### Nb₃Sn samples Bruker EAS Nb₃Sn bronze wire (NSTT28105Nb23) - OD = 1.45mm - Nb barrier Courtesy of M. Alessandrini Different twist pitch lengths: no twist 50 mm (4.5°) 5 mm (38°) ### I_c vs. strain measurements #### N₃Sn bronze wire Bruker EAS NSTT28105Nb23 twist pitch = zero twist pitch = 50 mm twist pitch = 5 mm 11 ### Conclusions - I_c maximum for a cubic (not distored) Nb₃Sn unit cell - Cubic Nb₃Sn unit cell is independent of axial strain at ~ 58° - Strain dependence of the critical current goes to zero for filaments at ~ 58° - Idem for cables where strain is applied to filaments under an angle of ~ 58°