Reduced strain/stress sensitivity of the critical current of Nb₃Sn conductors

B. Seeber¹, C. Calzolaio^{2,7}, D. Zurmühle², V. Abächerli³, M. Alessandrini⁴, G. De Marzi⁵ and C. Senatore²

Nb₃Sn - I_c vs. strain

J. Ekin, Cryogenics 20, 1980

ESRF set-up

L. Muzzi et al., SUST 25 (2012)

ESRF experiment

L. Muzzi et al., SUST 25 (2012)

OST-I for ITER (billet #7567)
OD = 0.81 mm
Ta barrier

ESRF experiment

L. Muzzi et al., SUST 25 (2012)

OST-I for ITER (billet #7567)
OD = 0.81 mm
Ta barrier

Lattice strain of Nb₃Sn

Zero applied strain

Without stainless steel jacket

With stainless steel jacket

Lattice strain of Nb₃Sn

Modelling: S. Awaji et al. SUST 23 (2010)

 $\varepsilon(\theta) = \sqrt{(1 + \varepsilon_{ax0})^2 \sin^2 \theta + (1 + \varepsilon_{rad0})^2 \cos^2 \theta} - 1$

Without stainless steel jacket

Applied tensile strain

$$---\epsilon$$
 = zero

$$---$$
 ε = 0.10%

$$-$$
 ε = 0.22%

$$---$$
 ε = 0.3%

$$---$$
 ε = 0.4%

$$---$$
 ε = 0.5%

Lattice strain of Nb₃Sn

Modelling: S. Awaji et al. SUST 23 (2010)

With stainless steel jacket

Applied tensile strain

$$---\epsilon$$
 = zero

$$---$$
 ε = 0.3%

$$--$$
 ε = 0.53%

$$---$$
 ε = 0.7%

$$---$$
 ε = 1.0%

Nb₃Sn samples

Bruker EAS Nb₃Sn bronze wire (NSTT28105Nb23) - OD = 1.45mm - Nb barrier

Courtesy of M. Alessandrini

Different twist pitch lengths:

no twist 50 mm (4.5°) 5 mm (38°)

I_c vs. strain measurements

N₃Sn bronze wire Bruker EAS NSTT28105Nb23

twist pitch = zero

twist pitch = 50 mm

twist pitch = 5 mm

11

Conclusions

- I_c maximum for a cubic (not distored) Nb₃Sn unit cell
- Cubic Nb₃Sn unit cell is independent of axial strain at ~ 58°
- Strain dependence of the critical current goes to zero for filaments at ~ 58°
- Idem for cables where strain is applied to filaments under an angle of ~ 58°

