Development of Compact CORC Multi-Layer Racetrack and Solenoid Coils

Tim Mulder, Alexey Dudarev, Sander Wessel, Jeremy Weiss, Danko van der Laan and Herman H. J. ten Kate

MT26, Vancouver, Canada– September 23, 2019
ReBCO Multi-Tape Conductors

ReBCO Multi-Tape Cables:
• Large magnets require currents beyond the capacity of a single ReBCO tape.
• Multiple tapes combined to a high-current ReBCO cable.
• Increased stability, single tape defects are less pronounced.
• Reduction of inductive and coupling losses.
• Three main designs: Roebel, Twisted Stacked Tape Cable (TSTC) and Conductor on Round Core (CORC).

TSTC:
• Tape stack with high current density.
• Difficult to bend and long twist pitch.
• Copper shell for practical handling during magnet winding.
• Mainly designed for large-scale magnets for fusion reactors.

Roebel:
• High current density.
• Flexible in the ‘out-of-plane’ bending direction.
• Fully transposed.
• Designed for compact high-field magnets.
CORC Wires, Cables and Cable-In-Conduit Conductors

CORC Wire: accelerator magnets, high-field insert coils or standalone solenoids.

CORC Cable: general purpose, stable SC magnets and power transmission.

CORC Cable-In-Conduit Conductor (CICC): high current, high-field magnets and HTS bus bars.

CORC:
- High omni-directional flexibility.
- Round shape resilient towards transverse loads.
- Internal core stabilized.
- No tape lost during production.
- For compact high-field magnets and large magnets (detector and fusion) and bus bars.

1st CORC Al-jacketed Cable-In-Conduit Conductor.
Quest for CORC-wire optimized ReBCO tape

CORC Wires:
- Made possible by the reduction in substrate thickness from 50 to 30 µm.
- Narrower tapes of 2 mm wide.
- Designed for high-field magnets.

CORC Strands:
- Thicker medium-current cables.
- Designed for large high-field magnets, requiring high thermal/electrical stability.

Further Cable & Wire Optimization:
- Thinner substrate of 30 -> 25 -> 20 µm.
- Narrower tapes of 2.0 -> 1.5 -> 1.0 mm.
- Higher I_c by increasing ReBCO layer thickness to 2 or 3 µm (or even more!).
ReBCO High-Field Magnets - Examples

Benefits of ReBCO for High Field Magnets:

- ReBCO conductors by far surpass common LTS conductors in I_c and B_{c2} at 4.2 K.
- User magnetic field far beyond 20 T in 4 to 30 K range.
- Extreme thermal and electrical stability!
- Hybrid HTS/LTS solutions available.

- Several ReBCO Roebel and CORC demonstrator coils have been exercised in the last years.

- CORC’s round shape allows multi-directional bending, thus practical coil winding, i.e. the CCT of LBNL.
CERN CORC demonstrator racetrack coils:

- Layout: 2 layers with each 8 turns
- Minimum bending diameter of 40 mm
- Coil inductance ≈ 50 µH, 0.38 T per kA
- I_c of around 4.5 kA at 10 T and 4.2 K

- First prototype using $\varnothing 3.3$ mm ‘dummy’ CORC wire comprising only a few ReBCO tapes.
- Tested in LN2 before and after winding.
Practice coil using dummy wire with 4 ReBCO tapes.
• Dummy wire: $I_c = 250 \text{ A}$, $n = 10$ @ 77 K before winding

Racetrack wet wound with Stycast 2850FT epoxy resin.
• Racetrack: $I_c = 30 \text{ A}$, $n = 4$ @ 77 K

Bending diameter of 40 mm appeared to be too small for the tapes.
✓ Narrower tapes with thinner substrate required!

Winding Diameter = 40 mm
CORC Racetrack Coil Development at CERN

What is next?
Designs are in preparation for a new prototype CORC dipole.

New CORC Racetrack
- Similar design as the first demonstrator
- Minimum bending radius of 20-25 mm (depends on wire)
- Two individual racetracks of 2 layers and 4 turns
- Intermediate connection between coils
- \(\sim 0.3 \) T/kA

A 1st CORC ‘Block’ Coil
- More complex design
- Minimum bending radius of 20-25 mm (depends on wire)
- Allows relatively homogenous magnetic field in the center over 20 mm and 0.3 T/kA

✓ Thinner and narrower tape requires for small bore, \(d < 50 \text{mm} \), CORC based magnets.
CORC Solenoid – Series of demonstrators

- A series of compact 2-layer CORC solenoids developed at CERN to demonstrate practical handling, materials choices, conductor robustness, and high performance of CORC wires for magnets.
- CORC wire: 27 ReBCO SCS2030 tapes, 2 mm wide, 30 μm substrate.
- Minimum bending radius of 30 mm.
- Magnet scheduled for testing in self-field in liquid nitrogen in Q4-2019, followed by a 4.2K test in background of 15 T at Uni Twente.

Design Self-Field Performance

<table>
<thead>
<tr>
<th>T (K) *</th>
<th>High-Field I_c (A)</th>
<th>Overall I_c (A)</th>
<th>T (K) **</th>
<th>Peak Field (T)</th>
<th>Central Field (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>785</td>
<td>805</td>
<td>77</td>
<td>0.47</td>
<td>0.39</td>
</tr>
<tr>
<td>70</td>
<td>1467</td>
<td>1505</td>
<td>70</td>
<td>0.88</td>
<td>0.72</td>
</tr>
<tr>
<td>65</td>
<td>1968</td>
<td>2019</td>
<td>65</td>
<td>1.19</td>
<td>0.97</td>
</tr>
<tr>
<td>60</td>
<td>2438</td>
<td>2500</td>
<td>60</td>
<td>1.47</td>
<td>1.20</td>
</tr>
<tr>
<td>50</td>
<td>3405</td>
<td>3494</td>
<td>50</td>
<td>2.05</td>
<td>1.68</td>
</tr>
<tr>
<td>4.2</td>
<td>9517</td>
<td>9755</td>
<td>4.2</td>
<td>5.73</td>
<td>4.69</td>
</tr>
</tbody>
</table>

* 100 μV/m criterion
** Using the Overall I_c
CORC Solenoids – High-Field Test

- CORC coils are tested as insert in a 15T Nb₃Sn magnet at the University of Twente at 4.2 K.
- In 10 T background, the coil is expected to generate an additional 2.5 T.

Calculated in-field performance at 4.2K

<table>
<thead>
<tr>
<th>BG (T)</th>
<th>Ic (kA)</th>
<th>Peak field (T)</th>
<th>Central field (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.76</td>
<td>5.73</td>
<td>4.69</td>
</tr>
<tr>
<td>2</td>
<td>8.56</td>
<td>7.02</td>
<td>6.12</td>
</tr>
<tr>
<td>4</td>
<td>7.39</td>
<td>8.34</td>
<td>7.55</td>
</tr>
<tr>
<td>6</td>
<td>6.50</td>
<td>9.81</td>
<td>9.13</td>
</tr>
<tr>
<td>8</td>
<td>5.83</td>
<td>11.4</td>
<td>10.8</td>
</tr>
<tr>
<td>10</td>
<td>5.20</td>
<td>13.0</td>
<td>12.5</td>
</tr>
<tr>
<td>12</td>
<td>4.74</td>
<td>14.5</td>
<td>14.3</td>
</tr>
</tbody>
</table>

This CORC solenoid is the first of several CORC demonstrator coils. It will be succeeded by higher-performance CORC solenoid with more layers and higher-I_c tapes and by a CORC dipole magnet.
CORC Solenoid – Coil Preparation

- Two-layer CORC solenoid is prepared at CERN last week.
- The layers are wet-wound with Stycast 2850 FT epoxy.
- Insulation present around the CORC wire to prevent Stycast from leaking in.
- G10 spacers are placed on the coil extremities to fill the larger gaps.
• Joint terminals are outside high-magnetic-field region.
• Two 5-kA vapor-cooled current leads are prepared for the test.
• Al-alloy cylinder is shrink-fitted around the solenoid for mechanical support.
• Test in LN2 is this month at CERN -> Test in high-field and 4.2 K at Uni. Twente afterwards.

✔ Test in LN2 this month

Finished with Al-alloy shrink-fitted cylinder

5 kA joint terminals

More mechanical support will be added

High-Field region
Conclusion

✓ Series of CORC wire based demonstrator magnets are under development at CERN.
✓ CORC wire in the first trial CORC Racetrack coil degraded due to small winding radius.
✓ New CORC Racetrack coils are in development.
✓ A 1st compact CORC Solenoid prepared now for testing.
✓ Research on CORC Coils is going forward!
✓ Narrower & Thinner tape required for more compact CORC coils!