

Quench Behaviour of the HL-LHC Twin Aperture Orbit Correctors, Simulations vs. Experimental Observations

Matthias Mentink, Michal Duda, Franco Mangiarotti, Jeroen van Nugteren, Gerard Willering, and Glyn Kirby

Introduction

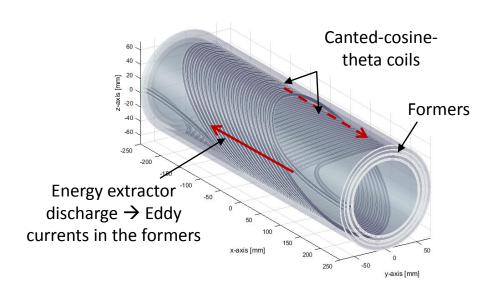
Individually insulated Nb-Ti/Cu strand

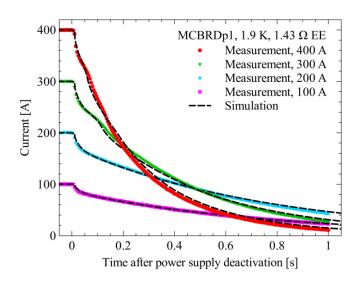
Thermally and electrically conductive aluminum-alloy former

- Twin Aperture Orbit Corrector Magnets, designated 'MCBRD'
- Canted Cosine Theta geometry, where two concentric coils together produce dipole field
- Individually insulated Nb-Ti/Cu strands held in place by conductive aluminum-alloy formers
- Developed and produced for HL-LHC upgrade in collaboration between CERN (MCBRDp1 prototype + short models), IHEP, IMP, CAS and WST
- How to protect in case of quench?

Related talks / posters:

- J. Robertson et al., Mon-Mo-Or3-3
- F. Mangiarotti et al., Thu-Af-Or22-2
- E. Ravaioli et al., Thu-Af-Or24-2
- W. Shaoqing et al., Wed-Af-Po3.20-04





Protection of the MCBRD magnets

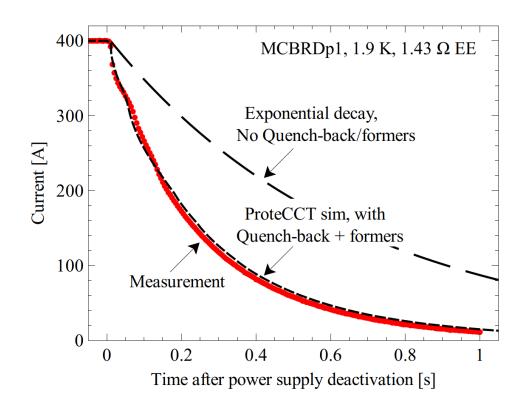
Property	Value
Ultimate current [A]	435 A
Inductance [H]	0.97
Magnetic length [m]	1.92

MCBRDp1 properties

Quench-back in MCBRD magnets

Typical discharge curves, sim vs meas, 1.43 Ω EE

Magnet protected by energy extraction and quench-back


- Quench detected \rightarrow Magnet discharged over external dump resistor $R_{\text{EE}} \rightarrow$ Eddy current generation in the formers \rightarrow Temperature increase from eddy current heating \rightarrow Normal zone throughout Nb-Ti/Cu coils (Quench-back) \rightarrow Discharge accelerates
- Stored magnetic energy dissipation at I_0 = 435 A, $R_{\rm EE}$ = 1.43 Ω , $T_{\rm Bath}$ = 1.9 K: 40% in Nb-Ti/Cu strands, 30% in energy extractor, 30% in formers and outer cylinder through eddy current heating

Motivation for dedicated simulation tool development, "ProteCCT"

Simulation versus measurement

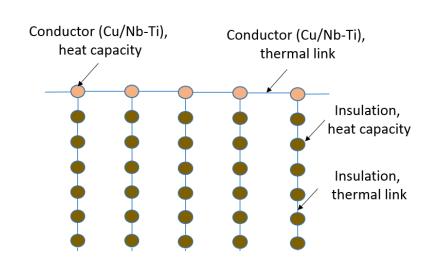
- Standard approach to energy extraction, no inductive coupling, no quench-back:
 - Exponential decay, with $\tau = L/R_{FF}$
 - For $I_0 = 400 \text{ A}$, $QI_{\text{Discharge}} = 20 \text{ kA}^2 \text{s} \rightarrow R_{\text{EE}} = 4.2 \Omega$, $V_{\text{Gnd.Max}} = R_{\text{EE}} \times I_0 = 1800 \text{ V}$
- ProteCCT simulation with inductive coupling to conductive formers and quench-back

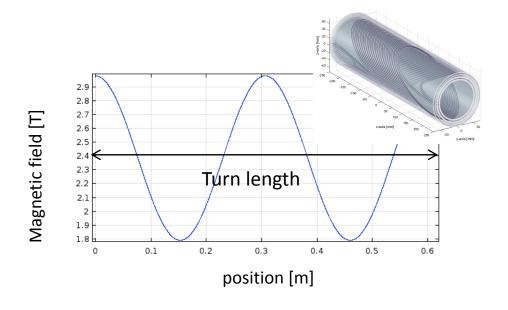
• For
$$I_0 = 400 \text{ A}$$
, $QI_{\text{Discharge}} = 20 \text{ kA}^2 \text{s} \rightarrow R_{\text{EE}} = 1.43 \Omega$, $V_{\text{Gnd.Max}} = R_{\text{EE}} \times I_0 = 570 \text{ V}$

 Discharge behavior of MCBRD magnets: Complex to simulate but factor three lower voltage-to-ground than with exponential decay, beneficial for circuit components

→ MCBRD protected with energy extraction + quench-back, so a correct and cross-checked simulation tool is a needed

Overview


- Simulation versus experimental observations on the CERN MCBRD short models and prototype
 - BBQ simulation: Initial voltage development after a quench
 - ProteCCT simulation: Discharge of the magnet
 - BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration
- Implications for other MCBRD variants
 - Upcoming prototype test at IMPCAS
 - Parameter variations and resulting hotspot temperature in the LHC
- Summary

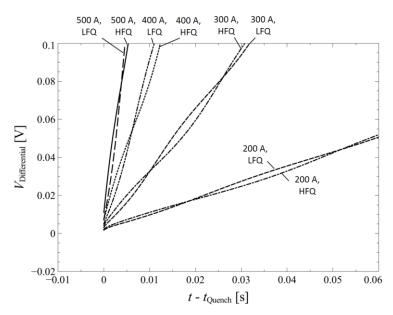


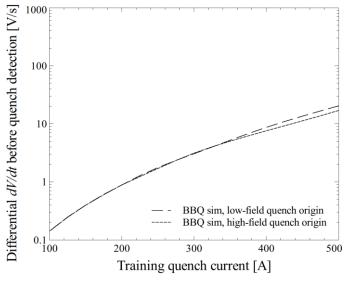
BBQ simulation of initial voltage development after a quench

BBQ: 1+1D thermal implementation

Axially varying magnetic field in CCT-type magnet

BBQ = FEM-based (Comsol) simulation tool for calculating quench-related properties of a single Nb-Ti/Cu conductor with surrounding insulation

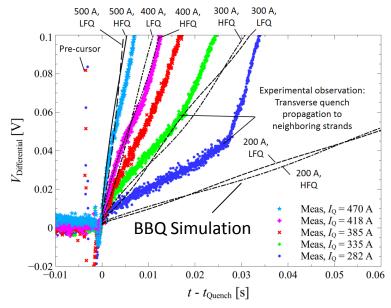

- 1+1D thermal implementation: Transverse propagation between core and insulation, and axial propagation
- With non-linear magnetic-field- and temperature-dependent properties from STEAM material library
- For MCBRD magnets: Considers axially varying magnetic field
- Free to download from Steam website (cern.ch/steam)

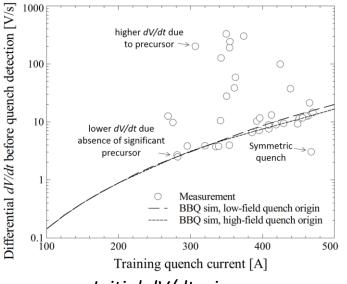


BBQ Simulation Results

Quench origination, simulation

Initial dV/dt, simulation


 HFQ = Quench originating at peak field of turn, LFQ = Quench originating at minimum field in turn

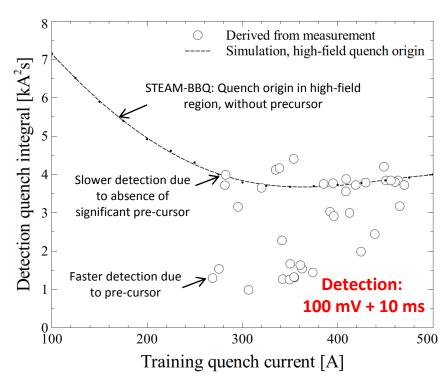


Simulation results versus experimental observations

Quench origination, sim vs exp

Initial dV/dt, sim vs exp

- HFQ = Quench originating at peak field of turn, LFQ = Quench originating at minimum field in turn
- Experimental observations:
 - For some quenches: Large dV/dt due to pre-cursors, others: smaller dV/dt due to only thermal propagation
 - Voltage oscillation, consistent with simulation results
 - Strand-to-strand propagation (not simulated) is observed, but for higher currents after reaching detection threshold
 → Modest influence on quench detection
- Comparison: Good consistency between simulation and measurement

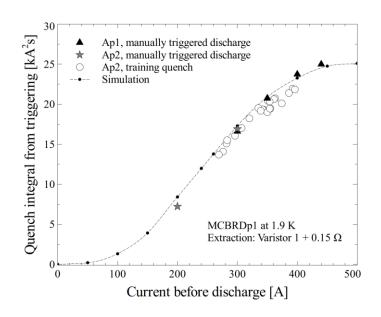


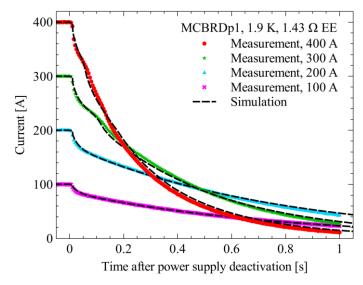
Detection + Validation of Quench

Detection QI, sim versus measurement

- Quench detection (100 mV threshold) + validation (10 ms validation time)
- For significant pre-cursors → Faster quench detection (less critical)
- Without pre-cursors → Only thermal propagation and slower detection, experimental observations consistent with simulation results
- 3.8 kA²s detection quench detection for MCBRDp1 at ultimate current (435 A)

Overview


- Simulation versus experimental observations on the CERN MCBRD short models and prototype
 - BBQ simulation: Initial voltage development after a quench
 - ProteCCT simulation: Discharge of the magnet
 - BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration
- Implications for other MCBRD variants
 - Upcoming prototype test at IMPCAS
 - Parameter variations and resulting hotspot temperature in the LHC
- Summary



ProteCCT simulation tool

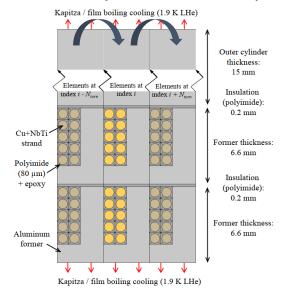
Manually triggered discharges versus training quenches on prototype MCBRDp1

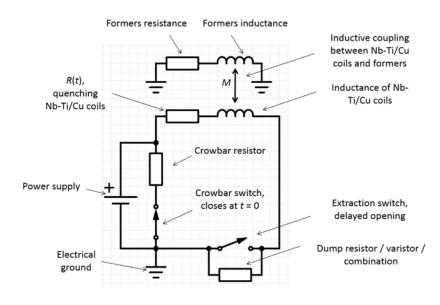
Typical discharge curves, sim vs meas, 1.43Ω EE, prototype MCBRDp1

- Simulation tool for calculating quench behaviour of CCT-type magnets, protected with energy extractor (or CLIQ through cosimulation)
- Calculates current discharges and internal voltages from the moment of quench protection triggering
- Very fast (typically <1 min calculation time for a discharge), optimized for ease-of-use, license-free and free-todownload [2-3], compatible with STEAM co-simulation

[2] M. Mentink, "STEAM-ProteCCT User Manual", EDMS Nr. 2159478 (2019)

[3] cern.ch/steam





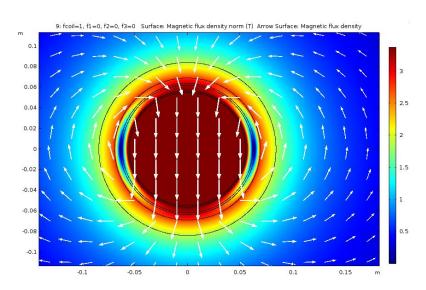
Internal workings of ProteCCT

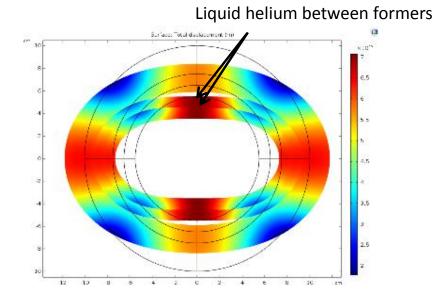
Turn-to-turn periodic boundary condition

3D Thermal network

Internal circuit

ProteCCT considers:


- 3D thermal network, of single periodically repeating turn, with Nb-Ti/Cu strands, insulation, formers, outer cylinder, and cooling to the bath
- Internal circuit (or complex circuit through co-simulation, such as CLIQ-protected circuit), with inductive coupling between Nb-Ti/Cu coils and formers
- Temperature and magnetic-field-dependent material properties

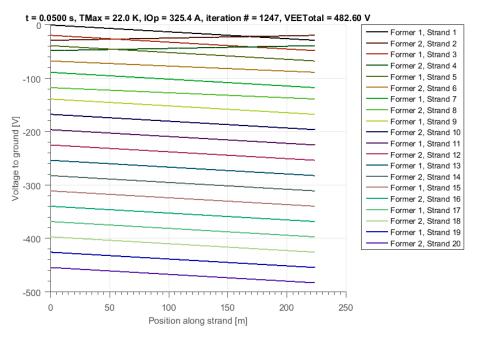


Two global correction factors to deal with complexities

Coupling-matrix calculated in Comsol, assuming 2D cos-ϑ current distribution

Sliding and deformation of formers during powering (Courtesy Martin Novak [4])

- fLoopFactor: To adjust former eddy current path length. Coupling matrix for coils and formers calculated with simplified 2D model using inductance of Nb-Ti/Cu coils as external input
- addedHeCpFrac: To account for extra heat capacity from liquid helium in gaps between formers, which slows down quench-back onset
- From fitting to experimental data: *fLoopFactor* = 2.0, *addedHeCpFrac* = 0.6%

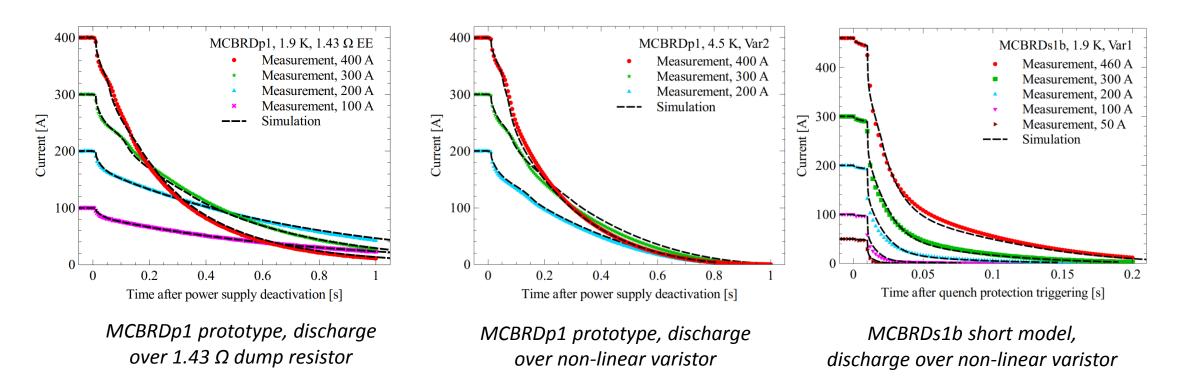


While the simulation is running...

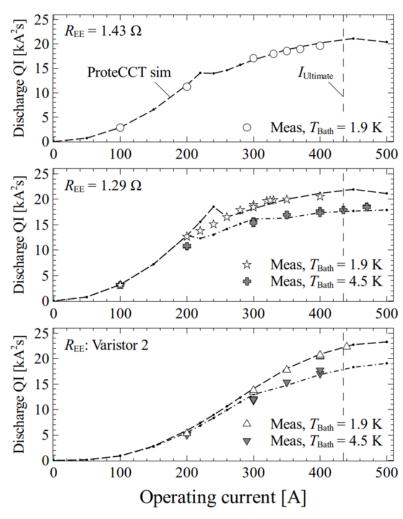
Strand temperature development (During simulation, t = 50 ms)

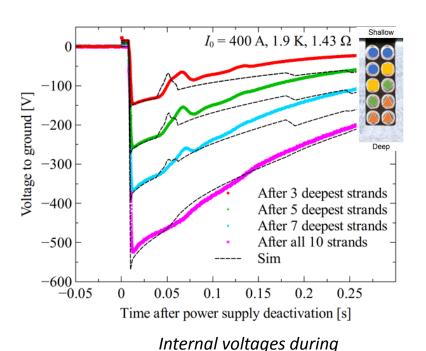
Voltage-to-ground calculation (During simulation, t = 50 ms)

Optional simulation output during discharge calculation


- Temperature evolution in strands (ProteCCT 3D internal thermal network)
- Voltage-to-ground calculation (ProteCCT internal electrical network)

Simulation versus experimental observations (1/2)


- Extensive measurement campaign by SM18 personnel
- Comparison of simulation to experimental observations for: Different magnetic lengths, energy extractor types, helium bath temperatures, operating currents
- No free parameters except global constants *fLoopFactor* = 2.0, *addedHeCpFrac* = 0.6%



Simulation versus experimental observations (2/2)

Discharge quench integrals of MCBRDp1, simulation versus experimental observation

discharge of MCBRDp1

Quench-back onset as function of maximum voltage over magnet

Meas, Var1+0.15 Ω
Meas, Var2 Ω
Meas, 1.29 Ω
Meas, 1.43 Ω

Meas, Var2 Ω
Meas, 1.43 Ω

Meas, Var2 Ω
Meas, 1.43 Ω

Meas, Var2 Ω
Meas, 1.29 Ω

Meas, Var2 Ω
Meas, 1.29 Ω

Meas, Var2 Ω
Meas, 1.29 Ω

Meas, 1.29 Ω

Meas, 1.29 Ω

Meas, Var2 Ω
Meas, 1.29 Ω

Meas, 1.29 Ω

Meas, Var2 Ω
Meas, 1.29 Ω

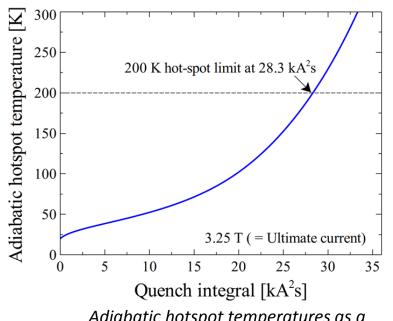
Meas, Var2 Ω
Meas, 1.29 Ω

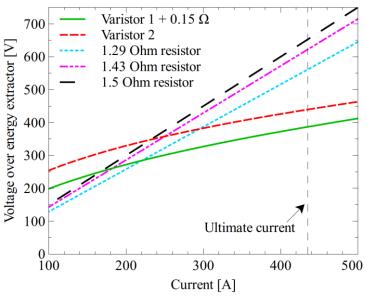
Meas, Var2 Ω
Meas, 1.29 Ω

Some minor inconsistencies (Example: ProteCCT is

- somewhat pessimistic for quench-back at intermediate current)
- Nevertheless, overall good consistency with experimental observations
- Implies that ProteCCT incorporates the relevant physics!

Overview


- Simulation versus experimental observations on the CERN MCBRD short models and prototype
 - BBQ simulation: Initial voltage development after a quench
 - ProteCCT simulation: Discharge of the magnet
 - BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration
- Implications for other MCBRD variants
 - Upcoming prototype test at IMPCAS
 - Parameter variations and resulting hotspot temperature in the LHC
- Summary



Resulting hotspot temperatures and peak voltages-to-ground

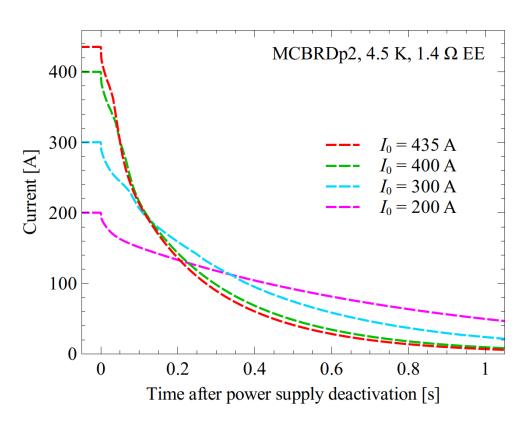
EE type	QI [kA²s]	T _{Hotspot} [K]	V _{Gnd,max} [V]
1.5 Ω (baseline)	3.8 + 20.5	143	590
Varistor 2 (option)	3.8 + 22.4	167	440

Adiabatic hotspot temperatures as a function of quench integral (BBQ)

Energy extractor characteristics: Linear resistors and non-linear varistors

Hotspot temperatures and voltages-toground at ultimate current (435 A)

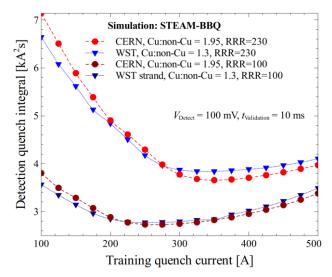
How to calculate hotspot temperature and voltage-to-ground?

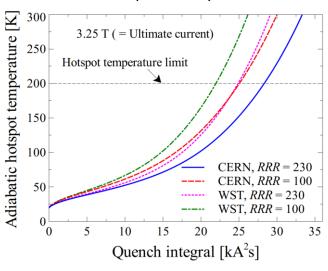

- Total quench integral = Detection/Validation quench integral (BBQ) + Discharge quench integral (ProteCCT)
- Total quench integral → Adiabatic hotspot calculation (BBQ)
- Peak voltage-to-ground = $I_0 \times R(I_0)$
- For $R_{EE} = 1.5 \Omega$ (baseline) and the varistor option, $T_{Hotspot} = 143$ and 167 K, and $V_{Gnd,Max} = 590$ and 440 V, respectively

Upcoming prototype test at IMPCAS

ProteCCT simulation results for upcoming MCBRD prototype test at IMPCAS

Chinese collaboration variant of MCBRD, different magnet properties from CERN variant:


- Nb-Ti/Cu strand: slightly bigger strand diameter, lower copper fraction (Cu:non-Cu = 1.3), higher critical current
- Tests at IMPCAS to be done at 4.5 K (\rightarrow gives lower $QI_{Discharge}$ than at 1.9 K), with $R_{EE} = 1.4 \Omega$
- Strand (in magnet) and former RRR presently not yet measured. Here assumed to be identical to MCBRDp1 (Measured strand RRR = 230, former RRR = 8 [5])



Parameter variations and resulting hotspot temperature

Conductor-dependent quench detection

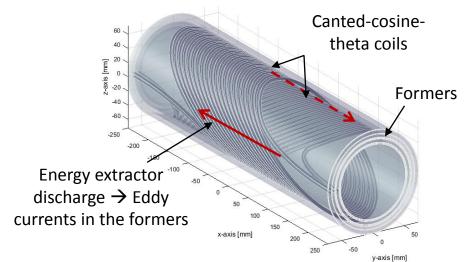
Hot-spot temperature

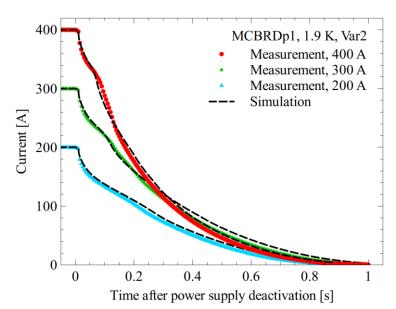
MCBRD material property variation, Implications at ultimate current (435 A)	Detection/Validation + discharge quench integral [kA ² s]	Adiabatic hotspot temperature at fixed field [K]
CERN variant, strand $RRR = 230$, Former $RRR = 8$, $t_{EEDelay} = 10$ ms	3.8 + 22.4	167
CERN variant, strand $RRR = 230$, Former $RRR = 8$, $t_{EEDelay} = 2$ ms	3.8 + 20.8	146
IHEP-IMP-WST variant, strand $RRR = 230$, Former $RRR = 8$, $t_{EEDelay} = 2$ ms	3.9 + 20.6	193
IHEP-IMP-WST variant, strand $RRR = 100$, Former $RRR = 8$, $t_{EEDelay} = 2$ ms	3.0 + 16.4	170
IHEP-IMP-WST variant, strand $RRR = 230$, Former $RRR = 6$, $t_{EEDelay} = 2$ ms	3.9 + 23.5	255

Effect of magnet parameter variations on quench integral and hotspot temperature

- Boundary conditions: Ultimate current (435 A), Varistor 2 ($V_{\text{Gnd,Max}}$ = 440 V), T_{Bath} = 1.9 K
- Hotspot temperature lower for $R_{\rm EE}$ = 1.5 Ω (baseline), with $V_{\rm Gnd,Max}$ = 590 V
- Lower hotspot temperature given by: Faster EE switch opening, lower critical current, more copper in the conductor, lower strand RRR, and higher RRR for formers and outer cylinder
- Hotspot temperature < 200 K for 1.5 Ω baseline and varistor option, provided former and outer cylinder RRR are sufficiently high

20




26-9-19

Summary

Quench protection of Twin Aperture Orbit Corrector Magnets (MCBRD)

- Canted-Cosine-Theta-type magnets, protected with energy extraction and quench-back from conductive formers
- Factor three faster discharge with respect to exponential decay (no quench-back, no conductive formers)
- Initial voltage development, subsequent magnet discharge, and resulting hotspot temperature calculated with BBQ and ProteCCT (multi-purpose tools, freely available on cern.ch/steam)
- Cross-checked against extensive experimental data-set
- Provided the former and outer cylinder RRR is sufficiently high, for the 1.5 Ω baseline energy extraction resistor and the non-linear varistor option, $T_{\rm Hotspot}$ < 200 K, $V_{\rm Gnd,Max}$ = 590 and 440 V, respectively
- These studies were made possible by the HL-LHC collaboration. The authors want to thank everyone for their support!

