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Introduction

* Twin Aperture Orbit Corrector Magnets,
designated ‘MCBRD’

* Canted Cosine Theta geometry, where two
concentric coils together produce dipole field

* Individually insulated Nb-Ti/Cu strands held in
place by conductive aluminum-alloy formers

* Developed and produced for HL-LHC upgrade in
collaboration between CERN (MCBRDp1
prototype + short models), IHEP, IMP, CAS and
WST

* How to protect in case of quench?

Related talks / posters:

* J. Robertson et al., Mon-Mo-0Or3-3

* F. Mangiarotti et al., Thu-Af-Or22-2

* E. Ravaioli et al., Thu-Af-Or24-2

* W. Shaoging et al., Wed-Af-P03.20-04



Protection of the MCBRD magnets

& Canted-cosine- 400 =y MCBRDpl, 19K, 1.43 QEE ]
40 theta coils LA . Measurement, 400 A
= ® I *  Measurement, 300 A | Property Value
% 0 300 ey . Measurement, 200 A |
“ Formers = | A\ L Simagoen 1004 ] Ultimate current [A] 435 A
-60 E F
- £ 2007 1 Inductance [H] 0.97
200 @]
Energy extractor ™ 100k ] Magnetic length [m] 1.92
discharge - Eddy . ]
currents in the formers o 7~ ol o o e MCBRDp1 properties
0 0.2 0.4 0.6 0.8 1
= ¥ et Time after power supply deactivation [s]
Quench-back in MCBRD magnets Typical discharge curves, sim vs meas, 1.43 Q EE

Magnet protected by energy extraction and quench-back

* Quench detected > Magnet discharged over external dump resistor R = Eddy current generation in the

formers = Temperature increase from eddy current heating=> Normal zone throughout Nb-Ti/Cu coils
(Quench-back) = Discharge accelerates

* Stored magnetic energy dissipation at I, =435 A, R;; =1.43 Q, T, = 1.9 K: 40% in Nb-Ti/Cu strands, 30% in
energy extractor, 30% in formers and outer cylinder through eddy current heating



Motivation for dedicated simulation tool development, “ProteCCT”

e Standard approach to energy extraction, no inductive

e — coupling, no quench-back:
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_ . simulate but factor three lower voltage-to-ground than
Simulation versus measurement with exponential decay, beneficial for circuit components
—> MCBRD protected with energy extraction + quench-back,
so a correct and cross-checked simulation tool is a needed
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Overview

e Simulation versus experimental observations on the CERN MCBRD short models and prototype
e BBQ simulation: Initial voltage development after a quench
* ProteCCT simulation: Discharge of the magnet
 BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration

* Implications for other MCBRD variants
* Upcoming prototype test at IMPCAS
* Parameter variations and resulting hotspot temperature in the LHC

* Summary
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BBQ simulation of initial voltage development after a quench
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BBQ: 1+1D thermal implementation Axially varying magnetic field in CCT-type magnet

BBQ = FEM-based (Comsol) simulation tool for calculating quench-related properties of a single Nb-Ti/Cu
conductor with surrounding insulation

* 141D thermal implementation: Transverse propagation between core and insulation, and axial propagation
* With non-linear magnetic-field- and temperature-dependent properties from STEAM material library
* For MCBRD magnets: Considers axially varying magnetic field

* Free to download from Steam website (cern.ch/steam)

i i CERN
C HiLum ) \\/), m /\/@ 26-9-19 [1] M. Mentink and M. Maciejewski, “STEAM-BBQ_User Manual”, EDMS Nr. 2159783 (2019).



BBQ Simulation Results

 HFQ = Quench originating at peak
field of turn, LFQ = Quench
originating at minimum field in turn
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Simulation results versus experimental observations
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HFQ = Quench originating at peak
field of turn, LFQ = Quench
originating at minimum field in turn

Experimental observations:

* For some quenches: Large
dV/dt due to pre-cursors,
others: smaller dV/dt due to
only thermal propagation

* Voltage oscillation, consistent
with simulation results

e Strand-to-strand propagation
(not simulated) is observed, but
for higher currents after
reaching detection threshold
- Modest influence on quench
detection

 Comparison: Good consistency

between simulation and
measurement



Detection quench integral [kA’s]

Detection + Validation of Quench
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Quench detection (100 mV threshold) +
validation (10 ms validation time)

For significant pre-cursors = Faster quench
detection (less critical)

Without pre-cursors = Only thermal
propagation and slower detection,
experimental observations consistent with
simulation results

3.8 kA%s detection quench detection for
MCBRDp1 at ultimate current (435 A)



Overview

e Simulation versus experimental observations on the CERN MCBRD short models and prototype
e BBQ simulation: Initial voltage development after a quench
* ProteCCT simulation: Discharge of the magnet
 BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration

* Implications for other MCBRD variants
* Upcoming prototype test at IMPCAS
* Parameter variations and resulting hotspot temperature in the LHC

* Summary
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Quench integral from triggering [kA’s]
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ProteCCT simulation tool
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[2] M. Mentink, “STEAM-ProteCCT User Manual”, EDMS Nr. 2159478 (2019)

[3] cern.ch/steam
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Simulation tool for calculating
guench behaviour of CCT-type
magnets, protected with energy
extractor (or CLIQ through co-
simulation)

Calculates current discharges and
internal voltages from the moment of
qguench protection triggering

Very fast (typically <1 min calculation
time for a discharge), optimized for
ease-of-use, license-free and free-to-
download [2-3], compatible with
STEAM co-simulation
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Internal workings of ProteCCT

Turn-to-turn periodic boundary condition
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3D Thermal network Internal circuit

ProteCCT considers:

* 3D thermal network, of single periodically repeating turn, with Nb-Ti/Cu strands, insulation, formers,
outer cylinder, and cooling to the bath

 Internal circuit (or complex circuit through co-simulation, such as CLIQ-protected circuit), with inductive
coupling between Nb-Ti/Cu coils and formers

* Temperature and magnetic-field-dependent material properties
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Two global correction factors to deal with complexities

Liquid helium between formers

a

9: feoil=1, f1=0, f2=0, f3=0 Surface: Magnetic flux density norm (T) Arrow Surface: Magnetic flux density

Coupling-matrix calculated in Comsol, assuming Sliding and deformation of formers during powering

2D cos-§ current distribution (Courtesy Martin Novak [4])

* flLoopFactor: To adjust former eddy current path length. Coupling matrix for coils and formers calculated
with simplified 2D model using inductance of Nb-Ti/Cu coils as external input

* addedHeCpFrac: To account for extra heat capacity from liquid helium in gaps between formers, which
slows down quench-back onset

* From fitting to experimental data: fLoopFactor = 2.0, addedHeCpFrac = 0.6%

‘ HI}%LPJREETI ’ C\m m /\/'\@ 26-9-19 [4] M. Novak and D. Barna, “Mechanical Simulation of a CCT Magnet”, internal document, 6th of December, (2018). 13
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While the simulation is running...
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Optional simulation output during discharge calculation
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Voltage-to-ground calculation
(During simulation, t = 50 ms)

* Temperature evolution in strands (ProteCCT 3D internal thermal network)

* Voltage-to-ground calculation (ProteCCT internal electrical network)




Simulation versus experimental observations (1/2)
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* Extensive measurement campaign by SM18 personnel

* Comparison of simulation to experimental observations for: Different magnetic lengths, energy extractor
types, helium bath temperatures, operating currents

* No free parameters except global constants fLoopFactor = 2.0, addedHeCpFrac = 0.6%
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Simulation versus experimental observations (2/2)
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Discharge quench integrals of MCBRDp1,
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Some minor inconsistencies (Example: ProteCCT is
somewhat pessimistic for quench-back at intermediate

current)

Nevertheless, overall good consistency with experimental

observations

Implies that ProteCCT incorporates the relevant physics!
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Overview

e Simulation versus experimental observations on the CERN MCBRD short models and prototype
e BBQ simulation: Initial voltage development after a quench
* ProteCCT simulation: Discharge of the magnet
* BBQ: Hotspot temperature and peak voltage-to-ground for baseline protection configuration

* Implications for other MCBRD variants
* Upcoming prototype test at IMPCAS
* Parameter variations and resulting hotspot temperature in the LHC

* Summary
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Resulting hotspot temperatures and peak voltages-to-ground
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How to calculate hotspot temperature and voltage-to-ground?

» Total quench integral = Detection/Validation quench integral (BBQ) + Discharge quench integral (ProteCCT)
Total quench integral = Adiabatic hotspot calculation (BBQ)

* Peak voltage-to-ground =/, x R(/,)

For Rie = 1.5 Q (baseline) and the varistor option, T, =143 and 167 K, and V4 viax = 590 and 440V, respectively

otspot —
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Upcoming prototype test at IMPCAS
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ProteCCT simulation results for upcoming
MCBRD prototype test at IMPCAS

Chinese collaboration variant of MCBRD, different
magnet properties from CERN variant:

* Nb-Ti/Cu strand: slightly bigger strand diameter,
lower copper fraction (Cu:non-Cu = 1.3), higher
critical current

* Tests at IMPCAS to be done at 4.5 K (> gives
lower QI than at 1.9 K), with R, =1.4 Q

e Strand (in magnet) and former RRR presently
not yet measured. Here assumed to be identical
to MCBRDp1 (Measured strand RRR = 230,

Discharge

former RRR = 8 [5])

[5] F. Pincot, MCBRD Former RRR measurement, email correspondence, 14th of December, (2019).

19



Parameter variations and resulting hotspot temperature

[ T
LS Simulation: STEAM-BBQ
= ' \. -®- CERN, Cu:non-Cu = 1.95, RRR=230
o LN -y WST, Cu:non-Cu = 1.3, RRR=230
Lj 6 ¥ -@- CERN,Cunon-Cu=195 RRR=100
= | ‘--.‘LVQ\ ----- w-  WST strand, Cu:non-Cu = 1.3, RRR=100
L v,
L e
= | v
:_':" 5t 3' Poeeer = 100 MV, fligation = 10 ms - 4
Q [ ”\‘\“‘
g | i
= e
g al v:_\‘ 1 A
C 9. T, S
=] (56 SEECme— S S A
AN L & 5 o 22 20
8 e 1
2 v.e. i
A 3 i v¥ ) ..';:-l'-":‘j 1
F "'"’“‘*.rrl:-;w:l“-"l'-"""""""
C L L 1
100 200 300 400 500

Training quench current [A]

Conductor-dependent quench detection

[F%]
(=)
[=}

(o)
W
[=}

=]
[}
(=]

—_
w
(=}

50

Adiabatic hotspot temperature [K]

HL-LHC

T ’ T T T T T T 'I T /‘!
. ro
3.25T (= Ultimate current) ~ /  //
- S
L Hotspot temperature limit /

CERN, RRR=230
——- CERN,RRR=100 |
------- WST, RRR = 230

--—-  WST, RRR =100
1 s | \

0 5 10 15 20 25 30 35

Quench integral [kA’s]
Hot-spot temperature

MCBRD material property variation, Detection/Validation + discharge Adiabatic hotspot

Implications at ultimate current (435 A) quench integral [kA2s] temperature at fixed
field [K]

CERN variant, strand RRR = 230, 3.8+224 167
Former RRR = 8, tiepelay = 10 ms

CERN variant, strand RRR = 230, 3.8+20.8 146
Former RRR = 8, teepejay = 2 MS

IHEP-IMP-WST variant, strand RRR = 230, 3.9+20.6 193
Former RRR = 8, trepejay = 2 MS

IHEP-IMP-WST variant, strand RRR = 100, 3.0+16.4 170
Former RRR = 8, tiepeiay = 2 MS

IHEP-IMP-WST variant, strand RRR = 230, 3.9+ 23.5 255
Former RRR =6, tiepeiay = 2 MS

Effect of magnet parameter variations on quench integral and hotspot temperature

* Boundary conditions: Ultimate current (435 A), Varistor 2 (Vg max = 440 V), T, = 1.9K
* Hotspot temperature lower for R = 1.5 Q (baseline), with V4 yax= 590 V

* Lower hotspot temperature given by: Faster EE switch opening, lower critical current,
more copper in the conductor, lower strand RRR, and higher RRR for formers and outer
cylinder

* Hotspot temperature < 200 K for 1.5 Q baseline and varistor option, provided former
and outer cylinder RRR are sufficiently high
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Summary

Quench protection of Twin Aperture Orbit Corrector Magnets
(MCBRD) o

* Canted-Cosine-Theta-type magnets, protected with energy ¢ IS\

extraction and quench-back from conductive formers

-250

* Factor three faster discharge with respect to exponential decay (no

quench-back, no conductive formers) Energy extractor ™
. ) discharge - Eddy
* Initial voltage development, subsequent magnet discharge, and currents in the formers

resulting hotspot temperature calculated with BBQ and ProteCCT
(multi-purpose tools, freely available on cern.ch/steam)

-200

Canted-cosine-
theta coils

Formers

y-axis [mm]

* Cross-checked against extensive experimental data-set

* Provided the former and outer cylinder RRR is sufficiently high, for 300¢
the 1.5 Q baseline energy extraction resistor and the non-linear '
varistor option, T, <200 K, Vo4 max = 590 and 440V,
respectively

200 -

Current [A]

otspot

* These studies were made possible by the HL-LHC collaboration. The 100

authors want to thank everyone for their support!
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