

TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

MT 26
International Conference
on Magnet Technology

Vancouver, Canada | 2019

Evolution of nano-particles doping in Nb₃Sn wires

¹Mattia Ortino

²S. Pfeiffer, ¹T. Baumgartner, ³M. Sumption, ⁴X. Xu, ⁵X. Peng, ²J. Bernardi, ¹M. Eisterer

²USTEM, TU Wien (Vienna, AT)

All the wires were manufactured by Hyper Tech and samples heat-treated by Fermi Lab, which are funded by the US Department of Energy, Office of High Energy Physics, SBIR Phase I & Phase II Grant No. DE-SC0017755, DE-SC0013849 & Fermilab LDRD

³The Ohio State University (Columbus, USA)

⁴Fermilab (Batavia, USA)

⁵Hyper Tech Research Inc. (Columbus, USA)

Outline

Introduction

- Nb₃Sn for FCC-hh
- Internal oxidation method
- Pros and cons

Experimental results

- \circ B_{c2}
- \circ J_c
- Microstructure
- Pinning
- Local properties: radial inhomogeneities

Conclusions

Outline

Introduction

- Nb₃Sn for FCC-hh
- Internal oxidation method
- Pros and cons

Experimental results

- o B_{c2}
- O_{C}
- Microstructure
- Pinning
- Local properties: radial inhomogeneities

Conclusions

Introduction: Nb₃Sn for FCC-hh

The h(adron)-h(adron) Future Circular Collider (FCC)- CERN, Geneva (CH)

 $Cos\theta$ – configuration 16T dipole example

Al7075 outer ring

Nb₃Sn

Ferromagnetic Iron

Cu wedges

Austenitic Steel (316 LN) pad

Austenic steel keys

Ti6Al4V poles

Nb₃Sn: the best conductor candidate

Courtesy of M.Boscolo, INFN (IT)

	J _c (12 T), RMS [A/mm ²]	J _c (15 T), RMS [A/mm ²]	В_{c2}(4.3 К), RMS [Т]	J _c (16 T), RMS [A/mm ²]	J _c (18 T), RMS [A/mm²]	Minimum RRR (15% rolling) -
0.7 mm RRP	2676 , <i>68</i>	1410 , 58	24.5 , 0.39	1098 , 55	610 , <i>47</i>	>100
0.85 mm RRP	2835 , 44	1601 , 33	25.9 , 0.19	1289 , <i>30</i>	785 , 25	>100
0.85 mm Bundle Barrier PIT	2323 , <i>83</i>	1342 , 49	26.7 , 0.1	1093, 40	688 , 26	>150
-			•			

FCC-Goal: non-Cu $J_c=1.5 \text{ kA/mm}^2$ (16 T, 4.2K)

State-of-the-art Nb₃Sn wires performances insufficient: a final boost is needed

Introduction: ¹Internal oxidation method

¹X. Xu, M. Sumption, X. Peng, Applied Physics Letters **104**, 082602 (2014)

- 1) O-source —— SnO_2 powder (located between the Cu/Sn core and Nb–1Zr)
- 2) Nb-1wt% Zr alloy Zr has much stronger affinity to O than Nb:oxidation of the alloy is possible
- 3) Reaction temperature = 620°-700°

Present-day PIT sub-element:

Introduction: pros and cons

Pros:

- Nanoparticles catalysing A-15 grain size refinement, hereby increasing J_c ($J_c = f(1/dgrain)$);
- ZrO₂ nanoparticles to become as well additional pinning centres (intra-granular);
- Ta addition to raise B_{irr} and B_{c2} of the superconducting phase;

But...Nb₃Sn formed by diffusion reaction: Sn diffuses outwards into a Nb tube (PIT) or -future possibility- in a region containing densely stacked Nb filaments (RRP)

Cons:

- Radial gradient in stoichiometry always present², specially in compounds doped with Ta³
- Other types of inhomogeneities sub-element sausaging or barrier breakage- may also occur

Inhomogeneities affect the superconducting performance: B_{c2} , J_c and local properties need to be assessed, relating them to the microstructure

Outline

Introduction

- Nb₃Sn for FCC-hh
- Internal oxidation method
- Pros and cons

Experimental results

- \circ B_{c2}
- \circ J_c
- Microstructure
- o Pinning
- Local properties: radial inhomogeneities
- Conclusions

Experimental results: B_{c2}

Binary-samples B_{c2} were measured in a 17 T cryostat via resistive method (values extrapolated to low temperatures)

Still low B_{c2} values (at 4.2 K)

Sample type	B _{c2} [T]	
T3607-mono	22.1	
T3657-multi	22.6	\
T3680-mono	23.4	
T3682-mono	22.3	

Ternary (+ Ta)-samples B_{c2} were measured in a 31T cryostat via resistive method at NHMFL in Jan 2019

Ta-doping raised B_{c2} of APCsamples (20% to 32%): high field performance of the high- J_c binary samples is expected to improve

B_{c2} values used for J_c extrapolation at TU Wien

Experimental results: J

Magnetic field, B, T Low field data (up to 7 T) measured in a SQUID, then extrapolated to B_{c2} (Fp(B)) dependence)

T3912-0.84mm-

675C/384h

Resistive measurements at NHMFL match the extrapolation: the FCC- target at 16 T is reached!

What has been improved?

- Ta gives a different high field behaviour
- Better Cu/non-Cu ratio: present wires have 1.3 (previous generation had between 2.5 and 3.3)
- 3) Microstructure? Was the grains size further refined?

Experimental results: microstructure

TEM-Transmission Kikuchi Diffraction (TKD) method

Binaries (TT) best grain size modal value: ~ 60 nm

Grain size refinement not affected by Ta-doping

Ternaries (PIT) best grain size modal value: ~ 50 nm

Still no preferential deposition

Experimental results: Pinning

investigated

would be enough to explain the F_{p,max} values obtained (Commercial-PIT values consistent)

Binaries

Ternaries

Commercial 🛖

PIT reference

Experimental results: Pinning

Binaries

Ternaries

→ Commercial

PIT reference

Maximum shift in ternaries:

$$b(f_{max}) = 0.25$$
 (Hf-doped samples)

$$b(f_{max}) = 0.22$$
 in binaries

Peak shifts suggest a point pinning contribution (also saw in n-irradiation studies) but its evaluation is difficult

parameters

•
$$d_{avg} = 4.5 \, nm$$

•
$$\rho_{defects} = 25.000 \, \mu m^{-3}$$

•
$$l_{avg} \approx 30 \, nm$$

Elementary pinning force approach:

$$f_{p,max} \cdot \rho_{defects}$$

$$F_{p,max (model)} = 51\% F_{p,max (exp.)}$$

How to weight GB and point pinning contribution still work in progress!

⁴Dew Hughes approach:

$$F_p = \eta L f_p = -\eta L \Delta W / x$$

$$F_{p,max (model)} = 16.8\% F_{p,max (exp.)}$$

Experimental results: radial inhomogeneities

Experimental results: radial inhomogeneities

Evaluation ⁵model based on some assumptions:

- Sub-elements inside the sample are parallel tubes with circular cross sections;
 - All sub-elements are identical (geometry/composition);

3. Each sub-element exhibits a monotonic radial Sn gradient with the highest value on the inside

Simulation runs on a single sub-element by changing its radial T_c distribution until the computed $m(T) \equiv m_{exp}(T)/N$

Experimental results: radial inhomogeneities

Radial inhomogeneitites —— radial Sn content:

For a more accurate analysis, the effective boundaries of the single subelements A-15 edges were evaluated by means of pixel counting

 5 Godeke's T_c (β) has been used in order to relate the T_c distribution to the at.% of Sn

⁵A.Godeke, Supercond. Sci. Technol. **19** (2006)

$$Tc(\beta) = \frac{Tc_{min} - T_{cMAX}}{1 + e^{(\beta - \beta_0)}} + T_{cMAX}$$

EDX and magnetic evaluations show similar behaviour but different absolute values

Conclusions

- APC-Nb₃Sn wires produced with 4at.%Ta additions confirm their high J_c achievements (beyond FCC-goals), as well by means of magnetometry;
- 1at.%Hf+O doped sample shows similar performances if compared with the 1at.%Zr-doped ones (even better homogeneity);
- Peak shifts in f_p show a possible point pinning contribution: a further investigation is needed;
- Microstructure has not changed in ternary compounds: same grain and nano-particle size as in the binary generation, still no preferential deposition;
- Inhomogeneities: more accurate investigation of the model (inter-granular gradient to be raised/lowered) or of the T_c-Sn% (still referring to binary compounds) is needed;
- Further T_c distribution analysis with SHPM coming: difficult to perform but with less restrictions than AC-susceptibility.

Backup

Sample	B _{c2avg}	p _{avg}	q _{avg}
T3657 (binary)	22.6	0.71	2.19
T3682 (binary)	23.4	0.64	2.15

Sample	B _{c2avg}	p _{avg}	q _{avg}
T3912 d=071	27.3	0.68	2.28
T3914 (Hf-sample)	26.8	0.73	2.29
T3912 d=0.84mm	27.8	0.68	2.32

$$Fp(B) = Fpmax * C * \left(\frac{B}{B_{c2}}\right)^{p} * \left(1 - \left(\frac{B}{B_{c2}}\right)\right)^{q}$$

Backup

Elementary pinning force approach:

$$f_{p,max} \cdot \rho_{defects}$$

$$f_{p,max} = \frac{U_{p,max}}{\xi} = \frac{\mu_0 H_c^2}{2} \frac{4}{3} \pi r_p^3$$

⁴Dew Hughes approach:

$$F_p = \eta L f_p = -\eta L \Delta W / x$$

$$F_p(B) = \frac{\frac{BV_f}{\Phi_0} \cdot \frac{\pi \xi^2 (H_{c2} - H)^2}{4.64k^2}}{\frac{r_p}{2}}$$

