TECHNISCHE UNIVERSITÄT WIEN Vienna Austria MT 26 International Conference on Magnet Technology Vancouver, Canada | 2019 # Evolution of nano-particles doping in Nb₃Sn wires ¹Mattia Ortino ²S. Pfeiffer, ¹T. Baumgartner, ³M. Sumption, ⁴X. Xu, ⁵X. Peng, ²J. Bernardi, ¹M. Eisterer ²USTEM, TU Wien (Vienna, AT) All the wires were manufactured by Hyper Tech and samples heat-treated by Fermi Lab, which are funded by the US Department of Energy, Office of High Energy Physics, SBIR Phase I & Phase II Grant No. DE-SC0017755, DE-SC0013849 & Fermilab LDRD ³The Ohio State University (Columbus, USA) ⁴Fermilab (Batavia, USA) ⁵Hyper Tech Research Inc. (Columbus, USA) ### Outline #### Introduction - Nb₃Sn for FCC-hh - Internal oxidation method - Pros and cons #### Experimental results - \circ B_{c2} - \circ J_c - Microstructure - Pinning - Local properties: radial inhomogeneities #### Conclusions ### Outline #### Introduction - Nb₃Sn for FCC-hh - Internal oxidation method - Pros and cons #### Experimental results - o B_{c2} - O_{C} - Microstructure - Pinning - Local properties: radial inhomogeneities #### Conclusions ### Introduction: Nb₃Sn for FCC-hh The h(adron)-h(adron) Future Circular Collider (FCC)- CERN, Geneva (CH) $Cos\theta$ – configuration 16T dipole example Al7075 outer ring Nb₃Sn Ferromagnetic Iron Cu wedges Austenitic Steel (316 LN) pad Austenic steel keys Ti6Al4V poles Nb₃Sn: the best conductor candidate Courtesy of M.Boscolo, INFN (IT) | | J _c (12 T),
RMS
[A/mm ²] | J _c (15 T),
RMS
[A/mm ²] | В_{c2}(4.3 К),
RMS
[Т] | J _c (16 T),
RMS
[A/mm ²] | J _c (18 T),
RMS
[A/mm²] | Minimum RRR
(15% rolling)
- | |----------------------------------|---|---|---|---|--|-----------------------------------| | 0.7 mm
RRP | 2676 ,
<i>68</i> | 1410 ,
58 | 24.5 ,
0.39 | 1098 , 55 | 610 ,
<i>47</i> | >100 | | 0.85 mm
RRP | 2835 ,
44 | 1601 , 33 | 25.9 ,
0.19 | 1289 , <i>30</i> | 785 ,
25 | >100 | | 0.85 mm
Bundle Barrier
PIT | 2323 ,
<i>83</i> | 1342 ,
49 | 26.7 ,
0.1 | 1093, 40 | 688 ,
26 | >150 | | - | | | • | | | | ## FCC-Goal: non-Cu $J_c=1.5 \text{ kA/mm}^2$ (16 T, 4.2K) State-of-the-art Nb₃Sn wires performances insufficient: a final boost is needed ### Introduction: ¹Internal oxidation method ¹X. Xu, M. Sumption, X. Peng, Applied Physics Letters **104**, 082602 (2014) - 1) O-source —— SnO_2 powder (located between the Cu/Sn core and Nb–1Zr) - 2) Nb-1wt% Zr alloy Zr has much stronger affinity to O than Nb:oxidation of the alloy is possible - 3) Reaction temperature = 620°-700° #### Present-day PIT sub-element: ### Introduction: pros and cons #### **Pros**: - Nanoparticles catalysing A-15 grain size refinement, hereby increasing J_c ($J_c = f(1/dgrain)$); - ZrO₂ nanoparticles to become as well additional pinning centres (intra-granular); - Ta addition to raise B_{irr} and B_{c2} of the superconducting phase; But...Nb₃Sn formed by diffusion reaction: Sn diffuses outwards into a Nb tube (PIT) or -future possibility- in a region containing densely stacked Nb filaments (RRP) #### Cons: - Radial gradient in stoichiometry always present², specially in compounds doped with Ta³ - Other types of inhomogeneities sub-element sausaging or barrier breakage- may also occur Inhomogeneities affect the superconducting performance: B_{c2} , J_c and local properties need to be assessed, relating them to the microstructure ### Outline #### Introduction - Nb₃Sn for FCC-hh - Internal oxidation method - Pros and cons #### Experimental results - \circ B_{c2} - \circ J_c - Microstructure - o Pinning - Local properties: radial inhomogeneities - Conclusions ### Experimental results: B_{c2} Binary-samples B_{c2} were measured in a 17 T cryostat via resistive method (values extrapolated to low temperatures) Still low B_{c2} values (at 4.2 K) | Sample type | B _{c2} [T] | | |-------------|---------------------|----------| | T3607-mono | 22.1 | | | T3657-multi | 22.6 | \ | | T3680-mono | 23.4 | | | T3682-mono | 22.3 | | Ternary (+ Ta)-samples B_{c2} were measured in a 31T cryostat via resistive method at NHMFL in Jan 2019 Ta-doping raised B_{c2} of APCsamples (20% to 32%): high field performance of the high- J_c binary samples is expected to improve B_{c2} values used for J_c extrapolation at TU Wien ### Experimental results: J Magnetic field, B, T Low field data (up to 7 T) measured in a SQUID, then extrapolated to B_{c2} (Fp(B)) dependence) T3912-0.84mm- 675C/384h Resistive measurements at NHMFL match the extrapolation: the FCC- target at 16 T is reached! #### What has been improved? - Ta gives a different high field behaviour - Better Cu/non-Cu ratio: present wires have 1.3 (previous generation had between 2.5 and 3.3) - 3) Microstructure? Was the grains size further refined? ### Experimental results: microstructure #### TEM-Transmission Kikuchi Diffraction (TKD) method #### Binaries (TT) best grain size modal value: ~ 60 nm Grain size refinement not affected by Ta-doping Ternaries (PIT) best grain size modal value: ~ 50 nm Still no preferential deposition ### **Experimental results: Pinning** investigated would be enough to explain the F_{p,max} values obtained (Commercial-PIT values consistent) **Binaries** **Ternaries** Commercial 🛖 PIT reference ### **Experimental results: Pinning** Binaries Ternaries → Commercial PIT reference Maximum shift in ternaries: $$b(f_{max}) = 0.25$$ (Hf-doped samples) $$b(f_{max}) = 0.22$$ in binaries Peak shifts suggest a point pinning contribution (also saw in n-irradiation studies) but its evaluation is difficult parameters • $$d_{avg} = 4.5 \, nm$$ • $$\rho_{defects} = 25.000 \, \mu m^{-3}$$ • $$l_{avg} \approx 30 \, nm$$ Elementary pinning force approach: $$f_{p,max} \cdot \rho_{defects}$$ $$F_{p,max (model)} = 51\% F_{p,max (exp.)}$$ How to weight GB and point pinning contribution still work in progress! ⁴Dew Hughes approach: $$F_p = \eta L f_p = -\eta L \Delta W / x$$ $$F_{p,max (model)} = 16.8\% F_{p,max (exp.)}$$ ### Experimental results: radial inhomogeneities ### Experimental results: radial inhomogeneities #### Evaluation ⁵model based on some assumptions: - Sub-elements inside the sample are parallel tubes with circular cross sections; - All sub-elements are identical (geometry/composition); 3. Each sub-element exhibits a monotonic radial Sn gradient with the highest value on the inside Simulation runs on a single sub-element by changing its radial T_c distribution until the computed $m(T) \equiv m_{exp}(T)/N$ ### Experimental results: radial inhomogeneities Radial inhomogeneitites —— radial Sn content: For a more accurate analysis, the effective boundaries of the single subelements A-15 edges were evaluated by means of pixel counting 5 Godeke's T_c (β) has been used in order to relate the T_c distribution to the at.% of Sn ⁵A.Godeke, Supercond. Sci. Technol. **19** (2006) $$Tc(\beta) = \frac{Tc_{min} - T_{cMAX}}{1 + e^{(\beta - \beta_0)}} + T_{cMAX}$$ EDX and magnetic evaluations show similar behaviour but different absolute values ### Conclusions - APC-Nb₃Sn wires produced with 4at.%Ta additions confirm their high J_c achievements (beyond FCC-goals), as well by means of magnetometry; - 1at.%Hf+O doped sample shows similar performances if compared with the 1at.%Zr-doped ones (even better homogeneity); - Peak shifts in f_p show a possible point pinning contribution: a further investigation is needed; - Microstructure has not changed in ternary compounds: same grain and nano-particle size as in the binary generation, still no preferential deposition; - Inhomogeneities: more accurate investigation of the model (inter-granular gradient to be raised/lowered) or of the T_c-Sn% (still referring to binary compounds) is needed; - Further T_c distribution analysis with SHPM coming: difficult to perform but with less restrictions than AC-susceptibility. ### Backup | Sample | B _{c2avg} | p _{avg} | q _{avg} | |----------------|--------------------|------------------|------------------| | T3657 (binary) | 22.6 | 0.71 | 2.19 | | T3682 (binary) | 23.4 | 0.64 | 2.15 | | Sample | B _{c2avg} | p _{avg} | q _{avg} | |-------------------|--------------------|------------------|------------------| | T3912 d=071 | 27.3 | 0.68 | 2.28 | | T3914 (Hf-sample) | 26.8 | 0.73 | 2.29 | | T3912 d=0.84mm | 27.8 | 0.68 | 2.32 | $$Fp(B) = Fpmax * C * \left(\frac{B}{B_{c2}}\right)^{p} * \left(1 - \left(\frac{B}{B_{c2}}\right)\right)^{q}$$ ### Backup #### Elementary pinning force approach: $$f_{p,max} \cdot \rho_{defects}$$ $$f_{p,max} = \frac{U_{p,max}}{\xi} = \frac{\mu_0 H_c^2}{2} \frac{4}{3} \pi r_p^3$$ #### ⁴Dew Hughes approach: $$F_p = \eta L f_p = -\eta L \Delta W / x$$ $$F_p(B) = \frac{\frac{BV_f}{\Phi_0} \cdot \frac{\pi \xi^2 (H_{c2} - H)^2}{4.64k^2}}{\frac{r_p}{2}}$$