Evolution of nano-particles doping in Nb$_3$Sn wires

1Mattia Ortino
2S. Pfeiffer, 1T. Baumgartner, 3M. Sumption,
4X. Xu, 5X. Peng, 2J. Bernardi, 1M. Eisterer

1Atominsttitut, TU Wien (Vienna, AT)
2USTEM, TU Wien (Vienna, AT)
3The Ohio State University (Columbus, USA)
4Fermilab (Batavia, USA)
5Hyper Tech Research Inc. (Columbus, USA)

All the wires were manufactured by Hyper Tech and samples heat-treated by Fermi Lab, which are funded by the US Department of Energy, Office of High Energy Physics, SBIR Phase I & Phase II Grant No. DE-SC0017755, DE-SC0013849 & Fermilab LDRD.
Outline

• Introduction
 o Nb_3Sn for FCC-hh
 o Internal oxidation method
 o Pros and cons

• Experimental results
 o B_{c2}
 o J_c
 o Microstructure
 o Pinning
 o Local properties: radial inhomogeneities

• Conclusions
• Introduction
 o Nb$_3$Sn for FCC-hh
 o Internal oxidation method
 o Pros and cons

• Experimental results
 o B_{c2}
 o J_c
 o Microstructure
 o Pinning
 o Local properties: radial inhomogeneities

• Conclusions
Introduction: Nb$_3$Sn for FCC-hh

The h(adron)-h(adron) Future Circular Collider (FCC)- CERN, Geneva (CH)

![Future Circular Collider diagram](image)

Cosθ – configuration
16T dipole example

Nb$_3$Sn: the best conductor candidate

<table>
<thead>
<tr>
<th>RRP</th>
<th>Nb$_3$Sn: the best conductor candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBT</td>
<td>RRP</td>
</tr>
<tr>
<td>A1775 outer ring</td>
<td>Nb$_3$Sn</td>
</tr>
<tr>
<td>Ferrimagnetic Iron</td>
<td>Cu wedges</td>
</tr>
<tr>
<td>Austenite Steel (316 LN) pad</td>
<td>Austenite steel keys</td>
</tr>
<tr>
<td>Ti6Al4V poles</td>
<td></td>
</tr>
</tbody>
</table>

FCC-Goal:
non-Cu $J_c=1.5$ kA/mm2 (16 T, 4.2K)

State-of-the-art Nb$_3$Sn wires performances insufficient: a final boost is needed

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 mm RRP</td>
<td>2676, 68</td>
<td>1410, 58</td>
<td>24.5, 0.39</td>
<td>1298, 55</td>
<td>610, 47</td>
<td>>100</td>
</tr>
<tr>
<td>0.85 mm RRP</td>
<td>2835, 44</td>
<td>1601, 33</td>
<td>25.9, 0.19</td>
<td>1289, 36</td>
<td>785, 25</td>
<td>>100</td>
</tr>
<tr>
<td>0.85 mm Bundle Barrier PIT</td>
<td>2323, 83</td>
<td>1342, 49</td>
<td>26.7, 0.1</td>
<td>1093, 40</td>
<td>688, 26</td>
<td>>150</td>
</tr>
</tbody>
</table>

Courtesy of M. Boscolo, INFN (IT)

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
1) O-source \[\text{SnO}_2 \text{ powder (located between the Cu/Sn core and Nb–1Zr)} \]
2) Nb–1wt% Zr alloy \[\text{Zr has much stronger affinity to O than Nb: oxidation of the alloy is possible} \]
3) Reaction temperature = 620°-700°

Present-day PIT sub-element:

APC-PIT sub-element:

End-2018: From binary to ternary compounds

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Introduction: pros and cons

Pros:
• Nanoparticles catalysing A-15 grain size refinement, hereby increasing $J_c\ (J_c = f(1/d_{\text{grain}}))$;
• ZrO$_2$ nanoparticles to become as well additional pinning centres (intra-granular);
• Ta addition to raise B_{irr} and B_{c2} of the superconducting phase;

But...Nb$_3$Sn formed by diffusion reaction: Sn diffuses outwards into a Nb tube (PIT) or -future possibility- in a region containing densely stacked Nb filaments (RRP)

Cons:
• Radial gradient in stoichiometry always present2, specially in compounds doped with Ta3
• Other types of inhomogeneities - sub-element sausaging or barrier breakage - may also occur

Inhomogeneities affect the superconducting performance: B_{c2}, J_c and local properties need to be assessed, relating them to the microstructure

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
• Introduction
 o Nb$_3$Sn for FCC-hh
 o Internal oxidation method
 o Pros and cons

• Experimental results
 o B_{c2}
 o J_c
 o Microstructure
 o Pinning
 o Local properties: radial inhomogeneities

• Conclusions
Experimental results: B_{c2}

Binary-samples B_{c2} were measured in a 17 T cryostat via resistive method (values extrapolated to low temperatures).

<table>
<thead>
<tr>
<th>Sample type</th>
<th>B_{c2} [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3607-mono</td>
<td>22.1</td>
</tr>
<tr>
<td>T3657-multi</td>
<td>22.6</td>
</tr>
<tr>
<td>T3680-mono</td>
<td>23.4</td>
</tr>
<tr>
<td>T3682-mono</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Still low B_{c2} values (at 4.2 K)

Ternary (+ Ta)-samples B_{c2} were measured in a 31T cryostat via resistive method at NHMFL in Jan 2019.

Ta-doping raised B_{c2} of APC-samples (20% to 32%): high field performance of the high-J_c binary samples is expected to improve.

<table>
<thead>
<tr>
<th>Diameter [mm]</th>
<th>Characteristics</th>
<th>B_{c2} [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>Nb-4at.%Ta-1at.%Zr tube + SnO2 powders</td>
<td>27.3</td>
</tr>
<tr>
<td>0.71</td>
<td>Nb-4at.%Ta-1at.%Hf tube + SnO2 powders</td>
<td>26.7</td>
</tr>
<tr>
<td>0.84</td>
<td>Nb-4at.%Ta-1at.%Zr tube + SnO2 powders</td>
<td>27.8</td>
</tr>
</tbody>
</table>

B_{c2} values used for J_c extrapolation at TU Wien.

Courtesy of X. Xu, Fermilab
Experimental results: J_c

Low field data (up to 7 T) measured in a SQUID, then extrapolated to B_{c2} ($F_p(B)$ dependence).

Resistive measurements at NHMFL match the extrapolation: the FCC target at 16 T is reached!

What has been improved?

1) Ta gives a different high field behaviour
2) Better Cu/non-Cu ratio: present wires have 1.3 (previous generation had between 2.5 and 3.3)
3) Microstructure? Was the grains size further refined?

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Experimental results: microstructure

Binaries (TT) best grain size modal value: ~ 60 nm

- Grain size refinement not affected by Ta-doping
- Likewise, nanoparticles do not show a size change

Ternaries (PIT) best grain size modal value: ~ 50 nm

- Still no preferential deposition

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Experimental results: Pinning

Single contributions of pure GB- pinning and point-pinning were investigated.

From literature (Bronze-route + PIT), the achieved grain-size refinement would be enough to explain the $F_{p,\text{max}}$ values obtained (Commercial-PIT values consistent).

Ternary samples exhibit a reduction of the $F_{p,\text{max}}$ but (as expected) a further peak-shift is visible.
Experimental results: Pinning

- Elementary pinning force approach:
 \[f_{p,max} \cdot \rho_{defects} \]
 \[F_{p,max \ (model)} = 51\% F_{p,max \ (exp.)} \]

How to weight GB and point pinning contribution still work in progress!

Maximum shift in ternaries:
\[b(f_{\text{max}}) = 0.25 \ (\text{Hf-doped samples}) \]
\[b(f_{\text{max}}) = 0.22 \text{ in binaries} \]

Peak shifts suggest a point pinning contribution (also saw in n-irradiation studies) but its evaluation is difficult

- **Dew Hughes approach:**
 \[F_p = \eta L f_p = -\eta L \Delta W/x \]
 \[F_{p,max \ (model)} = 16.8\% F_{p,max \ (exp.)} \]

- Parameters:
 - \(d_{avg} = 4.5 \text{ nm} \)
 - \(\rho_{defects} = 25.000 \mu m^{-3} \)
 - \(l_{avg} \approx 30 \text{ nm} \)

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Experimental results: radial inhomogeneities

Assessing T_c distribution \equiv radial A-15 inhomogeneities (coarse to fine grain size region). AC-susceptibility method (SQUID) was used to identify the Meissner shielding contours.

Ingredients:
- SQUID or Scanning Hall probe microscopy (SHPM)
- $B_{app} < B_{c1}$ (Meissner state)
- No other magnetic signals
- Temperature sweep
- Thin and flat sample for SHPM

With T_{sample} increasing, a shrink of the Meissner shielding volumes is expected.

Radii(T) of the single sub-elements are then converted to relative position inside the inner and outer radius of the A-15 region.

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Experimental results: radial inhomogeneities

Evaluation model based on some assumptions:

1. Sub-elements inside the sample are parallel tubes with circular cross sections;

2. All sub-elements are identical (geometry/composition);

3. Each sub-element exhibits a monotonic radial Sn gradient with the highest value on the inside.

Simulation runs on a single sub-element by changing its radial T_c distribution until the computed $m(T) \equiv m_{exp}(T)/N$.

Mattia Ortino - MT26, 22-26/09/19, Vancouver (Canada)
Experimental results: radial inhomogeneities

Radial inhomogeneities → radial Sn content:

For a more accurate analysis, the effective boundaries of the single sub-elements A-15 edges were evaluated by means of pixel counting.

$T_c(\beta) = \frac{T_{c, min} - T_{c, max}}{1 + e^{(\beta - \beta_0)}} + T_{c, max}$

EDX and magnetic evaluations show similar behaviour but different absolute values.

Conclusions

• APC-Nb$_3$Sn wires produced with 4at.%Ta additions confirm their high J_c achievements (beyond FCC-goals), as well by means of magnetometry;

• 1at.%Hf+O doped sample shows similar performances if compared with the 1at.%Zr-doped ones (even better homogeneity);

• Peak shifts in f_p show a possible point pinning contribution: a further investigation is needed;

• Microstructure has not changed in ternary compounds: same grain and nano-particle size as in the binary generation, still no preferential deposition;

• Inhomogeneities: more accurate investigation of the model (inter-granular gradient to be raised/lowered) or of the T_c-Sn% (still referring to binary compounds) is needed;

• Further T_c distribution analysis with SHPM coming: difficult to perform but with less restrictions than AC-susceptibility.
Thanks for your attention!
$F_p(B) = F_{pmax} \times C \times \left(\frac{B}{B_{c2}} \right)^p \times \left(1 - \left(\frac{B}{B_{c2}} \right) \right)^q$

<table>
<thead>
<tr>
<th>Sample</th>
<th>$B_{c2\text{avg}}$</th>
<th>p_{avg}</th>
<th>q_{avg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3657 (binary)</td>
<td>22.6</td>
<td>0.71</td>
<td>2.19</td>
</tr>
<tr>
<td>T3682 (binary)</td>
<td>23.4</td>
<td>0.64</td>
<td>2.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>$B_{c2\text{avg}}$</th>
<th>p_{avg}</th>
<th>q_{avg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3912 $d=0.71$</td>
<td>27.3</td>
<td>0.68</td>
<td>2.28</td>
</tr>
<tr>
<td>T3914 (Hf-sample)</td>
<td>26.8</td>
<td>0.73</td>
<td>2.29</td>
</tr>
<tr>
<td>T3912 $d=0.84\text{mm}$</td>
<td>27.8</td>
<td>0.68</td>
<td>2.32</td>
</tr>
</tbody>
</table>
• Elementary pinning force approach:

$$f_{p, \text{max}} \cdot \rho_{\text{defects}}$$

$$f_{p, \text{max}} = \frac{U_{p, \text{max}}}{\xi} = \frac{\mu_0 H_c^2}{2} \frac{4}{3} \pi r_p^3$$

• Dew Hughes approach:

$$F_p = \eta L f_p = -\eta L \Delta W / x$$

$$F_p(B) = \frac{BV_f}{\Phi_0} \cdot \frac{\pi \xi^2 (H_{c2} - H)^2}{4.64k^2}$$

$$\frac{r_p}{2}$$