Modeling quench propagation in the ENEA HTS CICC

A. Zappatore1, A. Augieri2, R. Bonifetto1, G. Celentano2, L. Savoldi1, A. Vannozzi2 and R. Zanino1

1NEMO group, Dipartimento Energia, Politecnico di Torino, Torino, Italy
2ENEA Frascati Research Center – Superconductivity Laboratory, FSN Department, Frascati, Italy
Outline

• Roadmap of our HTS magnet modeling effort
• Aim of this work
• The ENEA HTS CICC
• Preliminary analysis
• 1D model description
• Results
• Conclusions and perspective
Target: to develop an **HTS magnet model**

First, an **HTS CICC model** needs to be developed

- **CICC model development**
- **Verification**
- **Validation**
- **Integration in the 4C suite**

Quench tests in 2020 @ SULTAN

Preliminary analysis to guide the development of the 1D CICC model [1]

[1] A. Zappatore et al., SuST 32(8), 2019

Presented at CHATS2019 (KIT HTS CICC)

Here focus on ENEA HTS CICC

HTS magnet model: **H4C**
Aim of this work

• Develop a 1D model of the ENEA HTS CICC

• Calibrate the free model parameters through dedicated experiments

• Apply the 1D conductor model to the analysis of quench propagation in the ENEA HTS CICC
The ENEA HTS CICC

6 slots (4.3 mm x 4.3 mm) equipped with 20 REBCO non-soldered 4-mm-wide tapes each

Side channels in each slot

5 mm ϕ central hole for SHe cooling

Application in the medium term: HTS CS insert for the Divertor Tokamak Test (DTT) facility currently under design in Italy
Preliminary analysis

Aim: understand qualitatively if LTS 1D codes (key feature: uniform \(T \) and \(J \) on the cross-section) for TH analysis are OK also for HTS CICC

Fluid model

\[Pe = Re \Pr >> 1 \]

For SHe flow modelling a 1D model along the conductor is sufficient 😊

Solid model

\[\text{Bi}_{\text{stack}} > 1, \text{Bi}_{\text{core}} > 1 \]

For thermal modelling of the cross section 1 region (as in LTS TH models) is NOT sufficient 😞

Detailed model of the cross-section to obtain guidelines for the development of the CICC model [1]

[1] A. Zappatore et al., *SuST* 32(8), 2019
Detailed 0D+2D electro-thermal model of the CICC cross section

Aim of the detailed model: understand how different regions of the conductor cross-section can be lumped to develop a 1D conductor model (along)

2D Thermal

- Convection with He at \(T = 4.5 \text{ K}, h = 5000 \text{ W/(m}^2\text{K)} \)
- Heat conduction in solids
- Thermal contact resistance

0D Electric

\[
\begin{align*}
V &= R_{Al} I_{Al} \\
V &= V_C \left(\frac{I_{HTS,i}}{I_{C,i}(B,T)} \right)^n \\
I_{tot} &= I_{Al} + \sum_{i=1}^{N_{Stack}} I_{HTS,i}
\end{align*}
\]

\(q_i = RI_i^2 \)
Temperature differences $\Delta T > 50$ K arise within the conductor. Regions with $\Delta T < 20$ K are lumped. A Multi-regions 1D model is needed.
1D thermal + hydraulic + electric model

- Heat conduction in solids (25 regions)
- Euler-like set of PDEs for SHe speed, pressure, temperature (13 regions)
- Diffusion-like equation for the current along the different solids (25 regions)

Interfaces
- Solid – solid
 - Thermal
 - Core – jacket: 11400 W/(m²K) [2]
 - Core – stack: 32000 W/(m²K) [2]
 - Electric
 - Linear resistance: 0.4 mΩ/m [exp.]
- Solid – fluid: heat transfer coefficient from CFD

Op. condition
- \(T_{He}=4.5 \text{ K} \)
- \(L = 132 \text{ m} \)
- \(B = 17.1 \text{ T} \)
- \(I=32 \text{ kA} \)

Temperature differences between stacks and core > 40 K → issues on thermal stresses to be addressed in the future

• Inter-slot resistance low enough to guarantee current redistribution from the HTS stacks to the core
• Before the dump, the aluminum core arrives to carry most of the current, due to temperature increase in the tapes stabilizer
Results (II)

- Total dm/dt in side channels
 - $\sim 1/20$ dm/dt in hole
- Limited cooling capabilities of He flow in side channels
- Hot He helps propagating the quench downstream
- External heating
- Detection
- Dump
Results (III)

- The DTT CS will have delay time (τ_{delay}) = 2 s and current discharge time (τ_{dis}) = 4 s **BUT**
- τ_{delay} and τ_{dis} for the CS insert are still an open issue in the design

![Graph showing hot-spot temperature versus delay time](image)

- Same τ_{dis} for CS and insert \Rightarrow too high hot-spot temperature
 - Warning bell for quench propagation and current dump in an HTS magnet
 - Foresee different strategy for the discharge of the CS insert
Conclusions and perspective

• A 1D thermal-hydraulic-electric model has been developed and applied to the analysis of quench propagation in the ENEA HTS CICC

• The model shows that
 – Large temperature differences arise in the CICC cross-section
 – The current redistributes from the stacks to the slotted core

• The delay time for the quench detection in the DTT CS insert coil and the current discharge time should stay below 0.5 s, otherwise the hot-spot temperature becomes too high

• In perspective, the CICC model will be:
 – validated against the quench tests foreseen in 2020 @ SULTAN
 – embedded in the H4C magnet model (which already includes winding pack, coil casing and cryogenic circuit) to analyze the performance of an HTS magnet